import math
#initialisation of variables
Vb=500.0
Sb=1000.0
#Calculations
Zb=Vb**2/Sb
Xpu=.35*100/Zb
Zth=1000/5000.0
X=Xpu+Zth
V=1.0
Q=0
P=1.0
Eth=V+(Q*X/V)+complex(P*X/V)
Q=0.75
Eth1=V+(Q*X/V)+complex(P*X/V)
#Results
print("(i) For p.f unity , Eth= {0:.5f}+{1:.5f}i".format(Eth.real, Eth.imag))
print("(i) For p.f .8 , Eth= {0:.5f}+{1:.5f}i".format(Eth1.real, Eth1.imag))
import math
#initialisation of variables
X=.625
P=1.0
Q=0.6
V=1.0
#Calculations
Eth=V+(Q*X/V)+complex(P*X/V)
Phase_Eth=math.degrees(math.atan(Eth.imag/Eth.real))
#Results
print("Eth=%.2f at an angle %.0f degrees" %(abs(Eth),Phase_Eth))
import math
#initialisation of variables
P=0.5
toff=4.0
#Calculations
ton=(P*toff-0*toff)/(0.8-P)
#Results
print("Toff= 4min .")
print("ton(min.)=%.3f min." %ton)
import math
#initialisation of variables
V=1.0
Qload=1.0*V
Qcap=-0.75*V**2
#Calculations
Qnet=Qload+Qcap
VS=1-0.75*2*V # voltage sensitivity
#Results
print("Voltage sensitivity=%.3f" %VS)
print("since the voltage sensitivity is negative,\nvoltage regulation by tap changing will reduce net reactive load and improive voltage stability ")
import math
#initialisation of variables
Y=complex(-10)
n=1+0.1
#Calculations
Y1=n*(n-1)*Y
Y2=(1-n)*Y
#Results
print("Y1= {0:.2f}+{1:.2f}i".format(Y1.real, Y1.imag))
print("Y2= {0:.2f}+{1:.2f}i".format(Y2.real, Y2.imag))
print("The shunt elements equal to a reactor of 1.1V1^2 size oin the primary side and a capacitive of sixe 1V2**2 on the secondary side")
import math
#initialisation of variables
P=1.0 #assuming
S1=P/.95 #For pf .95
S2=P/.8 #For pf .8
#Calculations
dMVA=(S2-S1)*100.0/P #Increase in MVA rating
Q1=P*math.tan(math.radians(math.degrees(math.acos(0.95)))) #Q for pf .95
Q2=P*math.tan(math.radians(math.degrees(math.acos(0.8)))) #Q for pf .8
dPc=(Q2-Q1)*100.0/Q1 #Percent additional Reactive Power Capability
#Results
print("Percent additional Reactive Power Capability is %.2f" %dPc)