#Initialization
i1=8 #current in Amp
i2=1 #current in Amp
i3=4 #current in Amp
#Calculation
i4=i2+i3-i1 #current in Amp
#Results
print'Magnitude, I4 = %d A'%i4
#Initialization
e=12 #EMF source in volt
v1=3 #node voltage
v3=3 #node voltage
#Calculation
v2=v1+v3-e #node voltage
#Results
print'V2 = %d V'%v2
import numpy as np
#We have used method II for solving our problem by using simultaneous equations
a = np.array([[25,-2],[400,-8]])
b = np.array([[50],[3200]])
c=np.linalg.solve(a,b)
print'Voc = %d V'%c[0]
print'R = %d ohm'%c[1]
#Initialization
r1=100 #Resistance in Ohm
r2=200 #Resistance in Ohm
r3=50 #Resistance in Ohm
v1=15 #voltage source
v2=20 #voltage source
#Calculation
#Considering 15 V as a source & replace the other voltage source by its internal resistance,
r11=(r2*r3)*(r2+r3)**-1 #resistance in parallel
v11=v1*(r11/(r1+r11)) #voltage
#Considering 20 V as a source & replace the other voltage source by its internal resistance,
r22=(r1*r3)*(r1+r3)**-1 #resistance in parallel
v22=v2*(r22/(r2+r22)) #voltage
#output of the original circuit
v33=v11+v22
#Results
print'Voltage, V = %.2f'%v33
#Initialization
r1=10 #Resistance in Ohm
r2=5 #Resistance in Ohm
v2=5 #voltage source
i=2 #current in Amp
#Calculation
#Considering 5 V as a source & replace the current source by its internal resistance,
i1=v2*(r1+r2)**-1 #current using Ohms law
#Considering current source & replace the voltage source by its internal resistance,
r3=(r1*r2)*(r1+r2)**-1 #resistance in parallel
v3=i*r3 #voltage using Ohms law
i2=v3*r2**-1 #current using Ohms law
i3=i1+i2 #total current
#Results
print'Output Current, I = %.2f A'%i3
import numpy as np
r=25 #resistance in ohm
#We have used for solving our problem by using simultaneous equations
a = np.array([[(-13*60**-1),(1*20**-1)],[(1*60**-1),(-9*100**-1)]])
b = np.array([[-5],[-100*30**-1]])
c=np.linalg.solve(a,b)
i1=c[1]/r #required current
print'V2 = %.2f V'%c[0] #wrong answer in textbook
print'V3 = %.2f V'%c[1] #wrong answer in textbook
print'Current, I1 = %.2f A'%i1
import numpy as np
re=10 #resistance in ohm
#We have used for solving our problem by using simultaneous equations
a = np.array([[(-160),(20), (30)],[(20),(-210), (10)], [(30),(10), (-190)]])
b = np.array([[-50],[0],[0]])
c=np.linalg.solve(a,b)
ve=re*(c[2]-c[1])
print'I1 = %d mA'%(c[0]*10**3) #current I1
print'I2 = %d mA'%(c[1]*10**3) #current I2
print'I3 = %d mA'%(c[2]*10**3) #current I3
print'Voltage, Ve = %.3f V'%ve