#Initialization
c=10*10**-6 #capacitance in Farad
v=10 #voltage
#Calculation
q=c*v #charge in coulomb
#Results
print'Charge, q = %.1f uC'%(q*10**6)
#Initialization
l=25*10**-3 #length in meter
b=10*10**-3 #breadth in meter
d=7*10**-6 #distance between plates in meter
e=100 #dielectric constant of material
e0=8.85*10**-12 #dielectric constant of air
#Calculation
c=(e0*e*l*b)*d**-1 #Capacitance
#Results
print'Capacitance, C = %.1f nF'%(c*10**9)
#Initialization
v=100 #voltage
d=10**-5 #distance in meter
#Calculation
e=v*d**-1 #Electric Field Strength
#Results
print'Electric Field Strength, E = %d ^7 V/m'%round(e*10**-6)
#Initialization
q=15*10**-6 #charge in coulomb
a=200*10**-6 #area
#Calculation
d=q/a #electric flux density
#Results
print'D = %d mC/m^2'%(d*10**3)
#Initialization
C1=10*10**-6 #capacitance in Farad
C2=25*10**-6 #capacitance in Farad
#Calculation
C=C1+C2 #capacitance in Farad
#Results
print'C = %d uF'%(C*10**6)
#Initialization
C1=10*10**-6 #capacitance in Farad
C2=25*10**-6 #capacitance in Farad
#Calculation
C=(C1*C2)/(C1+C2) #capacitance in Farad
#Results
print'C = %.2f uF'%(C*10**6)
#Initialization
C1=10*10**-6 #capacitance in Farad
V=100 #voltage
#Calculation
E=(0.5)*(C1*V**2) #Energy stored
#Results
print'E = %.1f mJ'%(E*10**3)