import math
#Initialization
vcc=10 #voltage
vbe=0.7 #voltage, base-to-emitter junction
rb=910*10**3 #resistance in ohm
hfe=200
rc=2.7*10**3 #resistance in ohm
#Calculation
ib=(vcc-vbe)/rb #base current in ampere
ic=hfe*ib #collector in current in ampere
vo=vcc-(ic*rc) #output voltage
#Result
print'Output Current, I = %.2f mA'%(ic*10**3)
print'Output Voltage, V = %.1f V'%vo
import math
#Initialization
vcc=10 #voltage
r2=10*10**3 #resistance in ohm
r1=27*10**3 #resistance in ohm
vbe=0.7 #voltage, base-to-emitter junction
re=10**3 #resistance in ohm
rc=2.2*10**3 #resistance in ohm
#Calculation
vb=vcc*(r2*(r1+r2)**-1) # base voltage
ve=vb-vbe #emitter voltage
ie=ve/re #emitter current
ic=ie #collector current
vo=vcc-(ic*rc) #output voltage
#Result
print'Quiescent Output Voltage, V = %.1f V'%vo
import math
#Initialization
re=10**3 #resistance in ohm
rc=2.2*10**3 #resistance in ohm
#Calculation
gain=-rc/re #voltage gain
#Result
print'Voltage Gain = %.1f mA'%gain
import math
#Initialization
r1=15*10**3 #resistance in ohm
r2=47*10**3 #resistance in ohm
C=220*10**-9 #capacitance in farad
#Calculation
ri=(r1*r2)/(r1+r2) #resistance in paraller
fco=1/(2*math.pi*C*ri) #frequency in Hz
#Result
print'Voltage Gain = %d Hz'%round(fco)
import math
#Initialization
vcc=10 #voltage
r2=10*10**3 #resistance in ohm
r1=27*10**3 #resistance in ohm
vbe=0.7 #voltage, base-to-emitter junction
re=10**3 #resistance in ohm
rc=2.2*10**3 #resistance in ohm
#Calculation
vb=vcc*(r2*(r1+r2)**-1) # base voltage
ve=vb-vbe #emitter voltage
#Result
print'Quiescent Output Voltage, V = %.1f V'%ve