##Exa:1.4
import math
ang_d=215.;##given
ang_r=ang_d*math.pi/180.;
print'%s %.2f %s %.2f %s '%("%f degree angle is ",ang_d," radians" and "",ang_r,"");
##Exa:1.5
import math
ang_r=2.5;##given
ang_d=2.5*180./math.pi;##angle in degrees
print'%s %.2f %s %.2f %s '%("%f degree angle is ",ang_d," radians" and "",ang_r,"");
##Exa:1.6
import math
i_amp=0.075;##given
i_milamp=i_amp*1000.;##current in milliamp.
print'%s %.2f %s'%("%f amp current is ",i_milamp," mA");
##Exa:1.7
import math
fq_khz=1495.;##given
fq_Mhz=fq_khz/1000.;
print'%s %.2f %s'%(" kHz frequency is ",fq_Mhz," MHz");
##Exa:1.8
import math
c_pF=27000.;##given
c_uF=c_pF/1000.;
print'%s %.2f %s'%("picofarad capacitance is ",c_uF," microfarad");
##Exa:1.9
import math
c_mA=7.25;##given
c_A=c_mA*1000.;
print'%s %.2f %s'%(" milliampere current is ",c_A," ampere");
##Exa:1.10
import math
vg_v=3.75*10**-6;##given
vg_mv=vg_v*1000.;
print'%s %.2e %s'%(" volt voltage is ",vg_mv," mV");
##Ex:1.11
import math
r=33000.;##in ohms
i=0.003;##in amp
v=i*r;
print'%s %.2f %s'%("Voltage dropped = ",v," volts");
##Ex:1.12
import math
t=20.*10**-3;##in sec
i=45.*10**-6;##in amp
q=i*t*10**9;
print'%s %.2f %s'%("Charge transferred = ",q," nC");
##Ex:1.13
import math
p=0.3;##in watts
v=1500.;##in volts
i=(p/v)*10**6;
print'%s %.2f %s'%("Current supplied = ",i," microamp");
##Ex:1.14
import math
r=12.;##in ohms
v=6.;##in volts
i=(v/r);
print'%s %.2f %s'%("Current = ",i," Amp");
##Ex:1.15
import math
r=56.;##in ohms
i=0.1;##in amp
v=i*r;
print'%s %.2f %s'%("Voltage dropped = ",v," volts");
##Ex:1.16
import math
v=15.;##in volts
i=0.001;##in amp
r=v/i;
print'%s %.2f %s'%("Resistance = ",r," ohms");
##Ex:1.17
import math
p=1.724*10**-8;##in ohm-meter
l=8.;##in meters
a=1.*10**-6;##in sq. meter
r=(p*l)/a;
print'%s %.2f %s'%("Resistance = ",r," ohms");
##Ex:1.18
import math
p=1.724*10**-8;##in ohm-meter
l=20.;##in meters
a=1.*10**-6;##in sq. meter
i=5.;##in amperes
r=(p*l)/a;
v=i*r;
print'%s %.2f %s'%("Voltage dropped = ",v," volts");
##Ex:1.19
import math
v=3.;##in volts
i=1.5;##in amperes
p=v*i;
print'%s %.2f %s'%("Power supplied = ",p," watts");
##Ex:1.20
import math
v=4.;##in volts
r=100.;##in ohms
p=(v**2)/r;
print'%s %.2f %s'%("Power dissipated = ",p," watts");
##Ex:1.21
import math
i=20.*10**-3;##in amps
r=1000.;##in ohms
p=(i**2)*r;
print'%s %.2f %s'%("Power dissipated = ",p," watts");
##Ex:1.22
import math
v=600;##in volts
d=25*10^-3;##in meters
E=(v)/d;
print'%s %.2f %s'%("Electric Field Strength = ",E/10000," kV/m");
##Ex:1.23
import math
u=4.*math.pi*10**-7;##in H/m
i=20.;##in amps
d=50.*10**-3;##in meters
B=(u*i)/(2.*math.pi*d);
print'%s %.2e %s'%("Flux Density = ",B," Tesla");
##Ex:1.24
import math
B=(2.5*10**-3);##in Tesla
a=(20.*10**-4);##in sq. meter
flux=B*a;
print'%s %.2e %s'%("Flux = ",flux," webers");
##Ex:1.25
import math
B1=0.6;##in Tesla
u1=B1/800.;
u_r1=u1/(4.*math.pi*10**-7);
print'%s %.2f %s'%("reltive permitivity at 0.6T = ",u_r1,"");
B2=1.6;##in Tesla
u2=0.2/4000.;
u_r2=u2 /(4.*math.pi*10**-7);
print'%s %.2f %s'%("\n reltive permitivity at 1.6T = ",u_r2,"");
##Ex:1.26
import math
flux=0.8*10**-3;
a=(500.*10**-6);##in sq. meter
l=0.6;##in meter
N=800.;
B=flux/a;
print'%s %.2e %s'%("Flux Density = ",B," Tesla");
H=3500.;##in A/m
i=(H*l)/N;
print'%s %.2f %s'%("\n Current required = ",i," amp.s");