# Variable Declaration
PW = 3.00*pow(10,-6) # Pulse Width (s)
PRT = 6.00*pow(10,-3) # Pulse Repetition Time (s)
# Calculation
import math # Math Library
DS = PW/PRT # Duty Cycle
# Result
print "Duty Cycle =",round(DS,4)
# Variable Declaration
PW = 3.00*pow(10,-6) # Pulse Width (s)
PP = 100.00*pow(10,3) # Peak Power (W)
RT = 1997.00 # Rest Time (s)
# Calculation
import math # Math Library
DS = 1/RT # Duty Cycle
AP = PP*DS # Average Power (W)
# Result
print "Average Power =",round(AP),"W"
# Variable Declaration
NF = 9.00 # Noise Figure (dB)
k = 1.38*pow(10,-23) # Boltzmann's Constant (J/K)
del_f = 1.50*pow(10,6) # Receiver Band Width (Hz)
To = 290 # Standard Ambient temperature (K)
# Calculation
import math # Math Library
F = pow(10,NF/10) # Noise Figure
P_min = k*To*del_f*(F-1) # Minimum receivable signal in a Radar Receiver (W)
# Result
print "Minimum receivable signal in the Radar Receiver, P_min =",round(P_min/pow(10,-14),2),"* 10^(-14) W"
# Variable Declaration
Pt = 5.00*pow(10,5) # Peak Pulse Power (W)
Lambda = 3.00*pow(10,-2) # Wavelength (m)
P_min = 1.00*pow(10,-13) # Minimum receivable Power (W)
Ao = 5# Capture Area of Antenna (m^2)
S = 20 # Radar Cross-sectional Area (m^2)
# Calculation
import math # Math Library
r_max = pow(Pt*pow(Ao,2)*S/(4*math.pi*pow(Lambda,2)*P_min),0.25)
# Maximum range of the Radar System (m)
# Result
print "Maximum range of the Radar System, r_max =",round(r_max/1000),"km"
# Variable Declaration
F_dB = 4.77 # Noise Figure (dB)
f = 8.00*pow(10,9) # Operating Frequency (Hz)
c = 3.00*pow(10,8) # Speed of light in vacuum (m/s)
del_f = 5.00*pow(10,5) # IF Bandwidth (Hz)
rmax = 12.00 # Maximum distance (km)
D = 1.00 # Antenna Diameter (m)
S = 5.00 # Cross sectional area (m^2)
# Calculation
import math # Math Library
Lambda = c/f # Wavelength (m)
F = pow(10,F_dB/10) # Noise Figure
Pt = del_f*pow(Lambda,2)*(F-1)/(pow(48/rmax,4)*pow(D,4)*S) # Peak transmitted pulse power (W)
# Result
print "The peak transmitted pulse power, Pt =",round(Pt,1),"W"
# Variable Declaration
f = 2.50*pow(10,9) # Radar Operating Frequency (Hz)
c = 3.00*pow(10,8) # Velocity of light in vacuum (m/s)
Pt = 25.00*pow(10,6) # Peak Pulse Power (W)
D = 64.00 # Antenna Diameter (m)
F = 1.1 # Receiver Noise Figure
S = 1.00 # Radar Cross-sectional Area (m^2)
del_f = 5.00*pow(10,3) # Receiver Bandwidth (Hz)
# Calculation
import math# Math Library
Lambda = c/f# Wavelength (m)
r_max = 48*pow(Pt*pow(D,4)*S/(del_f*pow(Lambda,2)*(F-1)),0.25)
# Maximum range of the Radar System (km)
# Result
print "Maximum range of the Radar System, r_max =",round(r_max),"km"
# Variable Declaration
v_c = 3.00*pow(10,8) # Velocity of light in vacuum (m/s)
f = 5.00*pow(10,9) # MTI radar Transmit Frequency (Hz)
PRF = 800 # Pulse Repetition Frequency (pps)
# Calculation
import math # Math Library
Lambda = v_c/f # Wavelength(m)
vb1 = PRF*Lambda*60*60*pow(10,-3) # Blind Speed in for n=1 (km/h)
vb2 = 2*PRF*Lambda*60*60*pow(10,-3) # Blind Speed in for n=2 (km/h)
vb3 = 3*PRF*Lambda*60*60*pow(10,-3) # Blind Speed in for n=3 (km/h)
# Result
print "Lowest three blind speeds will be",round(vb1,1),",",round(vb2,1),"and",round(vb3,1),"km/h"
# Variable Declaration
F_dB = 13 # Noise Figure of beacon (dB)
Ft = 1.1 # Noise Figure of system
f = 2.50*pow(10,9) # Operating Frequency (Hz)
D = 64 # Antenna Diameter (m)
Db = 1 # Antenna Diameter of beacon (m)
del_f = 5.00*pow(10,3) # Bandwidth (Hz)
Ptt = 0.50*pow(10,6) # Peak Pulse power (W)
Ptb = 50 # Peak Pulse power of beacon (W)
k = 1.38*pow(10,-23) # Boltzman's Constant (J/K)
c = 3.00*pow(10,8) # Speed of light in vaccum (m/s)
To = 290 # Temperature (K)
# Calculation
import math# Math Library
Aot = 0.65*math.pi*pow(D,2)/4# Capture Area (m^2)
Aob = 0.65*math.pi*pow(Db,2)/4# Capture Area (m^2)
Lambda = c/f# Wavelength (m)
Fb = pow(10,F_dB/10)# Noise Figure
rmax_I = pow(Aot*Ptt*Aob/(pow(Lambda,2)*k*To*del_f*(Fb-1)),0.5)
# Maximum range for the interrogation link (m)
rmax_R = pow(Aob*Ptb*Aot/(pow(Lambda,2)*k*To*del_f*(Ft-1)),0.5)
# Maximum range for the reply link (m)
# Result
print "The Maximum Tracking Range, Rmax =",round(min(rmax_I/pow(10,10),rmax_R/pow(10,10))),"million km"
# Variable Declaration
c = 3.00*pow(10,8) # Velocity of light in vacuum (m/s)
f = 5.00*pow(10,9) # CW Transmit Frequency (Hz)
v = 100.00 # Target Speed (km/h)
# Calculation
import math # Math Library
Lambda = c/f # Wavelength (m)
vr = v*1000/(60*60) # Target Speed (m/s)
f_d = 2*vr/Lambda # Doppler frequency (Hz)
# Result
print "Doppler frequency, f_d =",round(f_d),"Hz"