# Variable Declaration
del_f = 2.00*pow(10,6) # Bandwidth of interest (Hz)
T = 300 # Operating Temperature (K)
k = 1.38*pow(10,-23) # Boltzmann's Constant (J/K)
# Calculation
import math # Math Library
Pn = k*T*del_f # Power Output (W)
# Result
print "Maximum noise power output of the resistor, Pn =",round(Pn/pow(10,-13),4),"* 10^(-13) Watts"
# Variable Declaration
del_f = 2.00*pow(10,6) # Bandwidth of interest (Hz)
T = 300 # Operating Temperature (K)
k = 1.38*pow(10,-23) # Boltzmann's Constant (J/K)
R = 10.00*pow(10,3) # Input Resistance (Ohms)
# Calculation
import math # Math Library
Vn = pow(4*k*T*del_f*R,0.5) # RMS Noise Voltage (V)
# Result
print "The rms noise voltage at the input of the amplifier, Vn =",round(Vn/pow(10,-6),1),"microvolts"
# Variable Declaration
del_f = 6.00*pow(10,6) # Bandwidth of interest (Hz)
T = 290 # Operating Temperature (K)
k = 1.38*pow(10,-23) # Boltzmann's Constant (J/K)
R1 = 300 # Input Resistance (Ohms)
R2 = 200 # Device Resistance (Ohms)
# Calculation
import math # Math Library
Vn = pow(4*k*T*del_f*(R1+R2),0.5) # Noise voltage (V)
# Result
print "The noise voltage at the input of the Television RF amplifier, Vn =",round(Vn/pow(10,-6),2),"uV"
# Variable Declaration
A1 = 10 # First Stage Voltage Gain
A2 = 25 # Second Stage Voltage Gain
R11 = 600 # First Stage Resistance (Ohms)
R12 = 1600 # First Stage Resistance (Ohms)
R21 = 27000 # Second Stage Resistance (Ohms)
R22 = 81000 # Second Stage Resistance (Ohms)
R23 = 10000 # Second Stage Resistance (Ohms)
R3 = 1.00*pow(10,6) # Third Stage Resistance (Ohms)
# Calculation
import math # Math Library
R1 = R11+R12 # Resistance 1 (Ohms)
R2 = R21*R22/(R21+R22)+R23 # Resistance 2 (Ohms)
Req = R1+(R2/pow(A1,2))+R3/((A1*A1)*(A2*A2)) # Input Noise Resistance (Ohms)
# Result
print "Input Noise Resistance, Req =",round(Req),"Ohms"
# Variable Declaration
Req = 2518.00 # Resistance From Example 2.4 (Ohms)
Rt = 600.00 # Resistance From Example 2.4 (Ohms)
Ra = 50.00 # Output Impedance (Ohms)
# Calculation
import math # Math Library
Req1 = Req-Rt # Equivalent Resistance (Ohms)
NF = 1+Req1/Ra # Noise Figure
# Result
print "Noise Figure, F =",round(NF,1),"or",round(10*math.log10(NF),2),"dB"
# Variable Declaration
To = 290 # Operating Temperature (K)
Ra = 50.00 # Antenna Resistance (Ohms)
Req = 30.00 # Equivalent Noise Resistance (Ohms)
# Calculation
import math # Math Library
NF = 1+Req/Ra # Noise Figure
F = 10*math.log10(NF) # Noise Figure (dB)
Teq = To*(NF-1) # Noise Temperature (K)
# Result
print "Noise Figure, F =",round(F,2),"dB"
print "Noise Temperature, Teq =",round(Teq),"K"