import math
from math import pi,sqrt
f=400.0
rc= 10.0
Rc= 40.0
#Minimum value of beta is given by Bomin= 23+(4*Ro /R)+(29*R/Ro)
#For minimum beta Ro/R=2.7, we represent Ro/R=b
b=2.7
Bomin=23+(4*b)+(29*1/b)
Bomin=round(Bomin,2)
print '1.The minimum value of beta is',Bomin
#Determination of R and C components
#R0 is given by ( rc*Rc) /( rc+Rc)
R0=(rc*Rc)/(rc+Rc)
R=2.7* R0
print '2.The value of resistor R=',R,'Kohm'
c=1/(2*pi*f*R*sqrt(6+(4*b)))*10**9
c=round(c,2)
print '3.The value of capacitor is',c,'pF'
import math
from math import pi,sqrt
#given
f=800.0
R0=18.0
#calculations
R=100.0
c=1/(2*pi*f*R*sqrt(6+(4*R0/R)))*10**9 #Capacitance in pF
c=round(c,2)
print 'The value of capacitor is',c,'pF'
import math
f=1000.0
Ro=5.0
R=100.0
c=1/(2*pi*f*R*sqrt(6+(4*R0/R)))*10**9
c=round(c,1)
print 'The value of capacitor is',c,'pF'
#The required open−circuit voltage gain is
Ao= 29+23*(Ro/R)+4*(Ro/R)**2
Ao=round(Ao,2)
print'1.The required open−circuit voltage gain is',Ao
gm=Ao/Ro
gm=round(gm,2)
print '2.The value of gm is',gm,'mS'
import math
from math import pi,sqrt
L=400*10**-6 #inductsnce in H
c1= 100.0 #capaitance in pF
c2= 300.0 #in pF
Q=200.0
Ro= 5*10**3
Bo=100.0 #beta value
#The tuning capacitance is
Cs=(c1*c2/(c1+c2))
Cs=round(Cs,2)
print '1.The value of capacitor is',Cs,'pF'
#the frequency of oscillation is obtained as
f=1/(2*pi*sqrt(L*Cs*10**-12))
f=round(f,2)
print '2.The frequency of oscillation is',f,'Hz'
#The dynamic impedence of the tuned circuit
wo= 2*pi*f
Rd=Q/(wo*Cs*10**-12)
Rd=round(Rd,2)
print '3.The dynamic impedence of the tuned circuit',Rd,'ohm'
#The coil series resistance is
r=wo*L/Q
r=round(r,2)
print '4.The coil series resistance is',r,'ohm'
#The capacitor raio c= c1/c2=1/3, and therefore 1− c2/B0∗c1 = 1
#The starting value of gm is therefore given by
c= c1/c2
gm=(1/Ro)*c +(c+3+2)*(1/Rd)
print '5.The value of gm is',gm
#Assuming the input resistance is that of the transistor alone
R1=Bo/gm
R1=round(R1,2)
print '6.The input resistance is',R1,'ohm'
wo2=1/((L*Cs*10**-12)+(1/R1*Ro*c1*c2*10**-12*10**-12))
wo=sqrt(wo2)
f=wo/(2*pi)
f=round(f,2)
print '7.The frequency of oscillation is',f,'Hz'
import math
Co=20.0 #in pF
Vd=-7 #reverse bias voltage in volt
#constant pottential of junction is 0.5
a=0.5 #for abrupt junction
Cd=Co/(1-(Vd/0.5))**a
Cd=round(Cd,2)
print 'The value of capacitor is',Cd,'pF'
from math import pi,sqrt
#given
C1=300.0
C2=300.0
Cc=20.0
L=100.0
#calculations
# A) With zero applied bias , the total tuning capacitor is
Vd1=0
a=0.5
Co=20.0
Cd1=Co/(1-(Vd1/0.5))**a
Cs1=1/((1/C1)+(1/C2)+(1/Cc)+(1/Cd1))
Cs1=round(Cs1,2)
print '1.The total tuning capacitor is',Cs1,'pF'
#The frequency of oscillation is
f=1/(2*pi*sqrt(L*10**-6*Cs1*10**-12))
f=round(f,2)
print '2.The frequency of oscillation is',f,'Hz'
Vd2=-7
Cd2=Co/(1-(Vd2/0.5))**a
Cs2=1/((1/C1)+(1/C2)+(1/Cc)+(1/Cd2))
Cs2=round(Cs2,2)
print '3.The total tuning capacitor is',Cs2,'pF'
f=1/(2*pi*sqrt(L*10**-6*Cs2*10**-12))
f=round(f,2)
print '4.The frequency of oscillation is',f,'Hz'