#Variable declaration
i1=4. #current through r1(A)
v3=3 #voltage(V)
v4=8 #voltage(V)
r3=3 #resistance(ohms)
r2=2 #resistance(ohms)
r4=4 #resistance(ohms)
#Calculations
i3=v3/r3 #current through r3(A)
i4=v4/r4 #current through r4(A)
i2=-(i3+i4-i1)/2 #current through r2(A)
v2=i2*r2 #voltage through r2(V)
#Result
print"v2 is",v2,"V"
#Variable declaration
v1=6 #current through r1(A)
i2=2 #voltage through r3(V)
i3=4 #voltage through r4(V)
r3=2 #resistance(ohms)
v3=3 #voltage through r3(ohms)
r2=2 #resistance(ohms)
r4=3 #resistance(ohms)
#Calculations
v2=i2*r2 #voltage through r2(ohms)
v3=i3*r3 #voltage through r3(ohms)
v4=4*i2+v3-v2-v1 #voltage through r4(ohms)
i4=v4/r4 #current through r4(A)
#Result
print"i4 is",i4,"A"
import numpy as np
#Calculations
a=np.array([[7,-3,-4],[-3,6,-2],[-4,-2,11]]) #solving three linear mesh equations
b=np.array([-11,3,25])
x=np.linalg.solve(a,b)
x
v=x[2]-x[1] #voltage across 2mho conductance(V)
#Results
print"v is",v,"V"
import numpy as np
#Variable declaration
R=20 #resistance across which voltage is to be calculated(ohms)
#Calculations
a=np.array([[35,-20],[-20,50]]) #solving two linear mesh equations
b=np.array([50,-100])
x=np.linalg.solve(a,b)
x
i=x[0]-x[1] #current through 20 ohms resistor(ohms)
V=20*i #voltage across 20 ohms(V)
#Results
print"i is",round(i,2)
print"voltage across 20 ohms is",round(V,1),"V"
#Variable declaration
Vs=16. #source voltage(V)
#Calculations
#Part b
I=0 #current through 10 V
Is=-4*(I-(Vs/32)) #current of current source(A)
#Part c
Is1=16 #current of current source(A)
I=0 #current through 10 V
Vs1=(I+(Is1/4))*32 #source voltage(V)
#Results
print"Is is",Is,"A"
print"Vs1 is",Vs1,"V"
#Variable declaration
V=9 #voltmeter of voltage(V)
i=9 #ammeter current of 9V
r1=1 #resistance(ohms)
r2=3 #resistance(ohms)
r=5 #resistance parallel to ammeter(ohms)
#Calculations
Isc=((i*r)-V)/(r1+r) #short circuiting a and b and converting current source to a voltage source(A)
Ro=((r+r1)*r2)/((r+r1)+r2) #output resistance(ohms)
#Results
print"Isc is",Isc,"A"
print"Ro is",Ro,"ohms"
import cmath
import math
from sympy import *
import sympy
#Variable declaration
t = symbols('t') #symbol defined
et1 = complex(50,86.6) #defining complex number
#calculations
et = (et1.real*sympy.sqrt(2)*sympy.cos(314*t))+et1.imag*sympy.sqrt(2)*sympy.cos(314*t+90) #expression
#Result
print et
import cmath
import math
from sympy import *
import sympy
#Variable declarations
V1, V2=symbols('V1 V2')
#Calculations
V = 0.3*V1 #voltage(V)
I1 = 0.007*V1 #current
y11 = I1/V1 #y parameter
I2 = -V/40 #current
y21 = I2/V1 #y parameter
I2 = V2/(((40+100)*200.)/((40+100)+200.)) #y parameter
y22 = I2/V2 #incorrect answer in textbook #y parameter
I1 = (-I2*200)/300 #current
y12 = I1/V2 #y parameter
#Results
print "y11+y12 is",round(y11+y12,5),"mho"
print "y22+y12 is",round(y22+y12,5),"mho"
print "y21-y12 is",round(y21-y12,5),"mho"
#Variable declaration
#port 2 open circuited,port 1 excited
z11=1075+1075j #as z11=V1/I1=(1.52<45)/(10**-3<0)=1075+1075j
z21=2022-1075j #as z21=V2/I1=(2.29<-28)/(10**-3<0)=2022+1075j
#port 1 open circuited and port 2 excited
z12=-1075j #as z12=V1/I2=(1.075<-90)/(10**3<0)=-1075j
z22=751-1073j #as z22=V2/I2=(1.31<-55)/(10**-3<0)=751-j1073
#Calculations
z=z11-z12 #parameters with reference to circuit
z1=z22-z12
z2=z21-z12
#Results
print"z11-z12(z) is",z
print"z22-z12(z1) is",z1
print"z21-z12(z2) is",z2
#Variable declaration
V2=6/7. #voltage source(V)
#Calculations
Rth=V2 #thevinin resistance(ohms)
Zl=Rth #load resistance(ohms)
#Result
print"load resistance is",round(Zl,3),"ohms"