#Variable declaration
E=120 #electric field(V/m)
B=5*10**-5 #magnetic field(T)
q=1.6*10**-19 #charge on electron(C)
u=10**6 #velocity of electron(m/s)
m=9.1*10**-31 #mass of electron(Kg)
a=9.81 #acceleration of gravitation(m/s^2)
#Calculations
#Part a
fe=q*E #force on electron due to electric field(N)
#Part
fm=B*q*u #force on electron due to magnetic field(N)
#Part c
fg=m*a #force on electron due to gravitational field(N)
#Results
print"force on electron due to electric field is",fe,"N"
print"force on electron due to magnetic field is",fm,"N"
print"force on electron due to gravitational field is",fg,"N"
import math
#Variable declaration
T1=1200. #temperature(k)
T2=1000. #temperature(k)
Ww=1.2*10**5 #work function(eV)
k=8.62
Ie1=200 #emission current density
T3=1500. #temperature(k)
#Calculations
Ie2=Ie1*(T2/T1)**2*math.exp(-(Ww/k)*((1/T2)-(1/T1))) #current density(mA/cm^2) at 1000k
Ie3=Ie1*(T3/T1)**2*math.exp(-(Ww/k)*((1/T3)-(1/T1))) #current density(mA/cm^2) at 1000k
#Results
print"current density at 1000 k is",round(Ie2,2),"mA/cm^2"
print"current density at 1500 k is",round(Ie3,2),"mA/cm^2"
import math
#Variable declaration
Ls=40 #distance from screen(m)
d=1.5 #distance between plates(cm)
Va=1200 #accelerating potential(V)
L=3 #length of CRT(m)
e=1.6*10**-19 #charge on electron(C)
m=9.1*10**-31 #mass of electron(Kg)
Y=4*10**-2 #vertical deflection(V)
#Calculations
#Part a
U=math.sqrt((2*e*Va)/m) #velocity of electron upon striking screen(m/s)
#Part
Vd=(2*d*Va*Y)/(L*Ls) #deflecting voltage(V)
#Part c
Vdmax=(m*d**2*U**2)/(e*L**2) #maximum allowable deflection(V)
#Results
print"velocity of electron upon stricking the screen is",round((U/1E+7),3),"*10^7 m/s"
print"deflecting voltage is",round(Vd/1E-2),"V"
print"maximum allowable deflection is",Vdmax,"V"