#Variable declaration
t=1 #thickness(mil)
e=1.6*10**-19 #charge on electron(C)
Pp=10**17 #concentration of phosphorous(atoms/cm^3)
Bn=5*10**16 #boron concentration(atoms/cm^3)
un=.135 #mobility(m^2/Vs)
#Calculations
n=(Pp-Bn)*10**6 #net concentration(atoms/cm^3)
g=e*un*n #conductivity()
rho=10**6/(g*25) #resistivity(ohm mil)
Rs=rho/t #sheet resistance(ohm mil^2)
#Results
print"Sheet resistance is",round(Rs),"ohm(mil**2)"
#Variable declaration
R=20*10**3 #resistance of resistor(ohms)
w=25 #width(um)
Rs=200 #sheet resistance(ohm/square)
R1=5*10**3 #resistance(ohms)
#Calculations
#Part a
l=(R*w)/Rs #length required to fabricate 20 kohms(um)
#Part b
L=25 #length of resistor of 5 k ohms(um)
w1=(Rs*L)/R1 #width required to fabricate 5 kohms(um)
#Results
print"length required to fabricate 20 kohms resistor is",l,"um"
print"width required to fabricate 5 kohms resistor is",w1,"um"
#Variable declaration
C=0.4*10**-12 #capacitance(pF/um^2)
A=10**-12 #area of film(m^2)
d=400*10**-10 #thickness of SiO2(amstrong)
Eo=8.849*10**-12 #absolute electrical permitivity of free space
#Calculations
Er=(C*d)/(Eo*A) #relative dielectric constant
#Results
print"relative dielectric constant of SiO2 is",round(Er),"(Solution given in the textbook is incorrect)"
#Variable declaration
C=250*10**-12 #capacitance(pF)
d=500*10**-10 #thickness of SiO2 layer(amstrong)
Eo=8.849*10**-12 #absolute electrical permitivity of free space
Er=3.5 #relative dielectric constant
#Calculations
A=(C*d)/(Eo*Er) #chip area(um^2)
#Results
print"chip area needed for a 250 pF MOS capacitor",round(A/1e-7,2),"(um)^2(Solution given in the textbook is incorrect)"