# Chapter 11 - Sinusoidal Oscillators¶

## PageNumber 514 example 2¶

In [1]:
macapa=900*10**-12##farad
r=100*10**3##ohm
#(a) frequency range
fremin=1/(2*3.14*r*macapa)
print "min frequency   =   %0.2f"%((fremin))+"hertz"
fremax=1/(2*3.14*r*micapa)
print "max frequency   =   %0.2f"%((fremax))+"hertz"
#(b) r3
r=10*10**3##ohm
r3=2*r
print "resistance r3   =   %0.2f"%((r3))+"ohm"

min frequency   =   1769.29hertz
max frequency   =   17692.85hertz
resistance r3   =   20000.00ohm


## PageNumber 516 example 3¶

In [2]:
from math import sqrt
induct=4*10**-3##henry
#min voltage
mivolt=c2/c1
print "min voltage   >=   %0.2f"%((mivolt))+"volt"
#frequency
freque=(((1/(2*3.14)))*sqrt((c1+c2)/(induct*c1*c2)))
print "frequency   =   %0.2f"%((freque))+"hertz"

min voltage   >=   7.50volt
frequency   =   42379.83hertz


## PageNumber 517 example 5¶

In [3]:
from math import sqrt
induct=500*10**-6##henry
induc1=5000*10**-6##henry
mutuin=300*10**-6##henry
#(a) frequency
indcto=induct+induc1+2*mutuin
freque=1/((2)*3.14*sqrt(indcto*c1))
#(b) condition
r=10*10**3##ohm
conduc=8*10**-3##ampere per volt
r1=50*10**3##ohm
r_=r*r1/(r+r1)
volgai=conduc*r_
print "frequency   =   %0.2f"%((freque))+"hertz"
ratio1=(induc1+mutuin)/(induct+mutuin)
ratio1=ratio1*volgai
print "ratio1 greater than 1 so oscillations possible"

frequency   =   166467.63hertz
ratio1 greater than 1 so oscillations possible


## PageNumber 518 example 6¶

In [4]:
from math import sqrt
conduct=10*10**-3##ampere per volt
rd=50*10**3##ohm
r=10*10**6##ohm
induct=0.5##henry
rse=1*10**3##ohm
#(1) c11
c11=((((cds*cgs)/(cds+cgs))+1)*c1)/(((cds*cgs)/(cds+cgs))+1+c1)
#(2) frequency
freque=((sqrt(2))/(2*3.14*sqrt(induct*c11)))
print "resonant frequency   =   %0.2e"%((freque))+"hertz"
#(3) frequency parallel

freque=1/(2*3.14*sqrt(((induct*c*c1))/(c+c1)))
print "parallel resonant frequency   =   %0.2e"%((freque))+"hertz"
#frequency series
freque=1/((2*3.14*sqrt(induct*c1)))
print "series resonant frequency   =   %0.2e"%((freque))+"hertz"
qualit=((induct/c1)**(0.5))/rse
print "quality factor   =   %0.2f"%((qualit))
#correction required in book
#(4) loop gain
abeta1=conduct*rd*cds/cgs
print "loop gain   =   %0.2f"%((abeta1))
#(5)
w=r*(cds+cgs)
print "bias   =   %0.2e"%((w))+"second"

resonanting capacitance   =   5.00e-14farad
resonant frequency   =   1.42e+06hertz
parallel resonant frequency   =   1.03e+06hertz
series resonant frequency   =   1.01e+06hertz
quality factor   =   3162.28
loop gain   =   100.00
bias   =   6.00e-05second


## PageNumber 519 example 7¶

In [5]:
from math import sqrt
induct=100*10**-6##henry
#(1) frequency
ceq=(c*c1)/(c+c1)
freque=1/(2*3.14*(sqrt(induct*ceq)))
print "frequency   =   %0.2e"%((freque))+"hertz"##correction in the book
gaimin=c1/c
print "gain   =   %0.2f"%((gaimin))

frequency   =   1.23e+06hertz
gain   =   5.00


## PageNumber 520 example 8¶

In [6]:
induc1=0.4*10**-3##henry
freque=120*10**3##hertz
induct=((1/(4*3.14**2*freque**2*c)))-induc1
print "inductance   =   %0.2e"%((induct))+"henry"

inductance   =   4.02e-05henry


## PageNumber 520 example 9¶

In [7]:
from math import sqrt
induct=0.33##henry
r=5.5*10**3##ohm
#(1) series resonant frequency
freque=(1/(2*(3.14)))*sqrt(1/((induct)*c))
print "frequency   =   %0.2f"%((freque))+"hertz"
#(2)exceed of frequency
ratio1=sqrt((1+(c/c1)))
print "ratio parallel series   =   %0.2f"%((ratio1))
#correction required in the book
#(3) quality factor
qualit=(1/r)*sqrt(induct/c)
print "quality factor   =   %0.2f"%((qualit))

frequency   =   1087243.22hertz
ratio parallel series   =   1.03
quality factor   =   409.67