#Given data
Z1= 100 # in Ω
theta1= 30 # in °
Z2= 50 # in Ω
theta2= 0 # in °
Z3= 200 # in Ω
theta3= -90 # in °
Z4= 100 # in Ω
theta4= 30 # in °
if Z1*Z4 == Z2*Z3 :
print "The first condition is satisfied"
if theta1+theta4 == theta2+theta3 :
print "The second condiiton is also satisfied, So it is possible to balance the bridge under the given condition"
else:
print "The second condition is not satisfied."
print "So balance is not possible under given condition"
#Given data
Z1= 1000 # in Ω
theta1= -90 # in °
Z2= 500 # in Ω
theta2= 0 # in °
Z3= 1000 # in Ω
theta3= 0 # in °
R4= 100 # in Ω
XL4= 500 # in Ω
i_XL4= 500j # imaginary part
Z4=(R4+i_XL4) # in °
theta4= math.atan2(Z4.imag,Z4.real)*180/pi # in °
if theta1+theta4 == theta2+theta3 :
print "The first condiiton is satisfied."
else :
print "Balance is not possible with given configuration"
# 1/Z1=1/R1+j*omega*C1 (i)
# According to figure 1/Z1= R4/(Z2*Z3)+%i*XL4/(Z2*Z3) (ii)
# Comparing real and j-components of Eqn (i) and (ii)
R1= Z2*Z3/R4 # in Ω
OmegaC1= Z2*Z3/XL4 # in Ω
print "\nSince X_C1 is already equal to ",int(OmegaC1)," Ω, the bridge can be balanced simply by placing a "
print "resistance of ",int(R1)," Ω across the capacitor arm 1"
# Z3= R3-j*X_C3 (iii)
#Z3= Z1*expm(%i*theta1*pi/180)*Z4*expm(%i*theta4*pi/180)/(Z2*expm(%i*theta2*pi/180)) # (iv)
# Comparing real and j-components of Eqn (iii) and (iv)
R3= 1000 # in Ω
XC3= 200 # in Ω
print "\nSince R3 is already of ",int(R3)," Ω, the bridge can be balanced simply by adding a"
print "capacitor of reactance X_C3 of ",int(XC3)," Ω in series with the resistor R3 in arm 3."
from __future__ import division
#Given data
C2= 0.2 # in micro F
Ratio21= 10/1 # resistance ratio R2/R1
C1= C2*Ratio21 # in micro F
Ratio21_desh= 1/10
C1_desh= C2*Ratio21_desh # in micro F
print "The range of measurement of unknown capacitance = ",round(C1_desh,2),"µF to",int(round(C1)),"µF"
from __future__ import division
from numpy import pi
#Given data
R2= 5 # in ohm
R3= 2000 # in ohm
R4= 2950 # in ohm
C2= 0.5 # in micro F
C2=C2*10**-6 # in F
r2=0.4 # in ohm
f=450 # in Hz
omega= 2*pi*f
# Under Balace Condition Z1*Z4=Z2*Z3
# [r1+1/(j*omega*C1)]*R4= [r2+R2+1/(j*omega*C2)]*R3
# Equating the real parts we have, r1*R4= (r2+R2)*R3
r1= (r2+R2)*R3/R4 # in ohm
print "Value of r1 = %0.3f ohm" %r1
# Equating imaginary parts we have R4/(j*omega*C1)= R3/(j*omega*C2)
C1= R4/R3*C2 # in F
print "Value of C1 = %0.4f micro F" %(C1*10**6)
Tan_toh= omega*C1*r1
print "Dissipation Factor = %0.3e" %Tan_toh
#Given data
f=1000 #in Hz
R1=1000 #in ohm
R2=1000 # in ohm
R3=2000 #in ohm
R4=2000 #in ohm
C1=1*10**-6 #in F
r1= 10 # in ohm
omega=2*pi*f
C2=C1*R1/R2 #in F
print "Unknown capacitance = %0.f µF "%(C2*10**6)
r2=(R2*(R3+r1)-R1*R4)/R1 #in ohm
del_1=omega*r1*C1 #in radian
del_1=del_1*180/pi # in °
print "Phase angle error1 = %0.1f degree" %del_1
del_2=omega*r2*C2 #in radian
del_2=del_2*180/pi # in degree
print "Phase angle error2 = %0.1f degree" %del_2
#Given data
f=500 #in Hz
R2=4.8 #in ohm
R3=2*10**3 # in ohm
R4=2.85*10**3 #in ohm
C2=0.5*10**-6 #in F
r2= 0.4 # in ohm
omega=2*pi*f
C1=C2*R4/R3 #in F
print "The value of unknown capacitance = %0.4f micro F" %(C1*10**6)
r1=(R3*(R2+r2))/R4 #in ohm
print "Resistance of unknown capacitance = %0.3f ohm" %r1
Tan_del_1= omega*C1*r1
print "Dissipation factor = %0.5f" %Tan_del_1
#Given data
f=50 #in Hz
R2=330*10**3 #in ohm
R3=15*10**3 # in ohm
R4=22*10**3 #in ohm
C2=0.12*10**-6 #in F
omega=2*pi*f
R1= R2*R3/R4 # in ohm
print "Resistive component of unknown resistance = %0.f kohm" %(R1*10**-3)
C1= C2*R4/R3 # in F
print "Capacitive component of unknown capacitor = %0.3f micro F" %(C1*10**6)
D=1/(omega*C1*R1)
print "Dissipation factor = %0.2f" %D
#Given data
f=50 #in Hz
R4=309 #in ohm
R2=100 # in ohm
C3=109*10**-12 #in F
C4=0.5*10**-6 #in F
omega=2*pi*f
Cx= C3*R4/R2 # in F
print "Equivalent series capacitance = %0.2f µµF" %(Cx*10**12)
Rx= C4*R2/C3 # in ohm
# Power factor of the specimen
Tan_delta= omega*Cx*Rx
print "Power factor of the specimen = %0.4f" %Tan_delta
from math import cos, tan
from numpy import pi
#Given data
f=50 #in Hz
R4=1000 #in ohm
C3=50*10**-12 #in F
delta=9 # in °
epsilon_r= 2.3
epsilon_0= 8.854*10**-12
d= 0.3*10**-2 # in meter
A=314 # area of each electrode in square cm
A=A*10**-4 # in square meter
omega=2*pi*f
C1= epsilon_r*epsilon_0*A/d # in F
# Formula tan (delta)= 1/(omega*C1*R1)
R1= 1/(omega*C1*tan(delta*pi/180)) # in ohm
C4= 1/(omega**2*C1*R1*R4) # in F
print "Variable capacitor = %0.1f micro F" %(C4*10**6)
R2= C3*R4*(cos(delta*pi/180))**2/C1 # in ohm
print "Variable resistance = %0.f ohm" %R2
# Note: Calculation of R2 in the book is wrong
#Given data
f=25 #in kHz
f=f*10**3 # in Hz
R1=3.1*10**3 #in ohm
R2=25*10**3 #in ohm
R4=100*10**3 #in ohm
C1=5.2*10**-6 #in F
omega= 2*pi*f
# From C3/C1= R2/R4-R1/R3
# C3= C1*(R2/R4-R1/R3) (i)
# and omega= 1/sqrt(R1*R3*C1*C3)
# R3= 1/(omega**2*R1*C1*C3), putting this value in (i)
C3= C1*R2/(R4*(1+R1**2*C1**2*omega**2)) # in F
print "Equivalent capacitance = %0.3f µµF" %(C3*10**12)
R3= 1/(omega**2*R1*C1*C3) # in ohm
print "Equivalent parallel resistance = %0.1f kohm" %(R3*10**-3)
# Note Evaluating the value of C3 in the book is wrong.
#Given data
R2= 5 # in ohm
R3= 2000 # in ohm
R4= 2950 # in ohm
C2= 0.5 # in miu F
C2=C2*10**-6 # in F
r2=0.4 # in ohm
f=450 # in Hz
omega= 2*pi*f
# Under Balace Condition Z1*Z4=Z2*Z3
# [r1+1/(j*omega*C1)]*R4= [r2+R2+1/(j*omega*C2)]*R3
# Equating the real parts we have, r1*R4= (r2+R2)*R3
r1= (r2+R2)*R3/R4 # in ohm
print "Value of r1 = %0.3f ohm" %r1
# Equating imaginary parts we have R4/(j*omega*C1)= R3/(j*omega*C2)
C1= R4/R3*C2 # in F
print "Value of C1 = %0.4f micro F" %(C1*10**6)
Tan_toh= omega*C1*r1
print "Dissipation Factor = %0.3e" %Tan_toh
#Given data
L1= 52.6 # in mH
r1= 28.5 # in ohm
R2= 1.68 # in ohm
R3= 80 # resistance in ohm
R4= 80 # resistance in ohm
r2= r1*R3/R4-R2 # in ohm
print "Resistance of coil = %0.2f ohm" %r2
L2=L1*R3/R4 # in mH
print "Inductance of coil = %0.1f mH" %L2
#Given data
L= 47.8 # in mH
R= 1.36 # in ohm
R2= 100 # in ohm
R3= 32.7 #in ohm
R4= 100 #in ohm
R1= R2*R3/R4-R # in ohm
print "Resistance of coil = %0.2f ohm" %R1
L1= R2/R4*L # in mH
print "Inductance of coil = %0.1f mH" %L1
#Given data
R2= 1000 # in ohm
R3= 1000 #in ohm
R4= 1000 #in ohm
C4= 0.5 # in miu F
C4= C4*10**-6 # in F
R1= R2*R3/R4 # in ohm
print "Resistance of inductor = %0.f ohm" %R1
L1= C4*R2*R3 # in H
print "Inductance of inductor = %0.1f H" %L1
#Given data
r= 469 # in ohm
R2= 1000 # in ohm
R3= 218 #in ohm
R4= 1000 #in ohm
C= 10 # in miu F
C= C*10**-6 # in F
R1= R2*R3/R4 # in ohm
print "Resistance of inductor = %0.f ohm" %R1
L1= C*R2/R4*(r*(R3+R4)+R3*R4) # in H
print "Inductance of inductor = %0.3f H" %L1
#Given data
r= 500 # in ohm
R2= 400 # in ohm
R3= 400 #in ohm
R4= 400 #in ohm
C= 2 # in miu F
C= C*10**-6 # in F
R= R2*R3/R4 # in ohm
print "Resistance of AB = %0.f ohm" %R
L= C*R2/R4*(r*(R3+R4)+R3*R4) # in H
print "Inductance of AB = %0.2f H" %L
#Given data
r= 100 # in ohm
R2= 1000 # in ohm
R3= 500 #in ohm
R4= 1000 #in ohm
C= 3 # in micro F
C= C*10**-6 # in F
Rx= R2*R3/R4 # in ohm
print "Value of Rx = %0.f ohm" %Rx
Lx= C*R2/R4*(r*(R3+R4)+R3*R4) # in H
print "Value of Lx = %0.2f H" %Lx
#Given data
R2= 1000 # in ohm
R3= 16800 #in ohm
R4= 833 #in ohm
C4= 0.38 # in miu F
C4= C4*10**-6 # in F
f= 50 # in Hz
omega=2*pi*f
L1= R2*R3*C4/(1+(omega*C4*R4)**2) # in H
print "Unknown inductance = %0.2f H" %L1
R1= R2*R3*R4*omega**2*C4**2/(1+(omega*C4*R4)**2) # in ohm
print "Unknown resistance = %0.2f ohm" %R1
#Given data
R1= 500 #in ohm
R2= 1000 # in ohm
R3= R2 #in ohm
L1= 0.18 # in H
f= 5000/(2*pi) # in Hz
omega= 2*pi*f
# L1= R2*R3*C4/(1+(omega*C4*R4)**2) (i)
# and R1= R2*R3*R4*omega**2*C4**2/(1+(omega*C4*R4)**2) or R1= omega**2*R4*C4*L1
R4C4= R1/(omega**2*L1)
# From eq (i)
C4= L1*(1+(omega*R4C4)**2)/(R2*R3) # in F
print "The value of C = %0.4f micro F" %(C4*10**6)
R4= R4C4/C4 # in ohm
print "The value of R4 = %0.f ohm" %R4
#Given data
R2= 1000 #in ohm
R3= 10000 # in ohm
R4= 2000 #in ohm
C4= 1*10**-6 # in F
omega= 3000 # radians/sec
L1= R2*R3*C4/(1+(omega*C4*R4)**2) # in H
print "Equivalent inductance of the network = %0.2f H" %L1
R1= R2*R3*R4*omega**2*C4**2/(1+(omega*C4*R4)**2) # in ohm
print "Equivalent resistance of the network = %0.3f kohm" %(R1*10**-3)
#Given data
R2= 2410 #in ohm
R3= 750 # in ohm
R4= 64.5 #in ohm
C4= 0.35*10**-6 # in F
r4= 0.4 # series resistance of capacitor in ohm
f=500 #/ in Hz
omega= 2*pi*f # radians/sec
R4= R4+r4 # in ohm
R1= R2*R3*R4*omega**2*C4**2/(1+(omega*C4*R4)**2) # in ohm
print "Resistance of the choke coil = %0.2f ohm" %R1
L1= R2*R3*C4/(1+(omega*C4*R4)**2) # in H
print "Inductance of the choke coil = %0.4f H" %L1
# Note: Calculation of finding the value of L1 in the book is wrong
from math import atan2
#Given data
R2= 834 # in Ω
R3= 100 # in Ω
C2= 0.124 # in µF
C2= C2*10**-6 # in F
C4= 0.1 # in µF
C4= C4*10**-6 # in F
L1= R2*R3*C4 # in H
f= 2 # in kHz
f= f*10**3 # in kHz
print "The value of L1 = %0.2f mH" %(L1*10**3)
R1= R3*C4/C2 # in Ω
print "The value of R1 = %0.2f Ω" %R1
pi_2_f_L1= 2*pi*f*L1 # value of 2*pi*f*L1
i= 1j # complex number
i_XL= i*pi_2_f_L1 #imaginary part
Z= R1+i_XL # impedance in ohm
print "The magnitude of effective impedence = %0.2f Ω" %abs(Z)
theta= atan2(Z.imag,Z.real)*180/pi
print "The angle of effective impedence = %0.2f°" %theta
#Given data
fr= 2 # in MHz
fr=fr*10**6 # in Hz
C=230+8 # in pF
C=C*10**-12 # in F
# Formula fr= 1/(2*pi*sqrt(L*C))
L= 1/((2*pi*fr)**2*C) # in H
print "Value of L = %0.1f µH" %(L*10**6)
# From the first set of data
fr= 1 # in MHz
fr=fr*10**6 # in Hz\
C= 1/((2*pi*fr)**2*L) # in F
print "Value of C = %0.f pF" %(C*10**12)
#Given data
C1= 208 # in pF
C1=C1*10**-12 # in F
Q1= 80
C2= 184 # in pF
C2=C2*10**-12 # in F
Q2= 50
f=165 # in kHz
f=f*10**3 # in Hz
omega= 2*pi*f # in radians/sec
# Part (i)
Rm= 1/omega*(1/(C2*Q2)-1/(C1*Q1)) # in ohm
print "Resistive component of unknown impedence = %0.2f ohm" %Rm
# Part(ii)
Xm= 1/omega*(1/C2-1/C1) # in ohm
print "Reactive component of unknown impedence = %0.f ohm" %Xm
#Given data
C1= 160*10**-12 # in F
C2= 36*10**-12 # in F
f1=250 # in kHz
f1=f1*10**3 # in Hz
f2=500 # in kHz
f2=f2*10**3 # in Hz
Cd= (C1-4*C2)/3 # in F
print "Self Capacitance of the coil = %0.2f µµF" %(Cd*10**12)
# Formula f1= 1/(2*pi*sqrt(L*(C1+Cd)))
L= 1/((2*pi*f1)**2*(C1+Cd)) # in H
print "Self inductance of the coil = %0.f µH" %(L*10**6)
#Given data
C1= 251*10**-12 # in F
C2= 50*10**-12 # in F
f1=3 # in MHz
f1=f1*10**6 # in Hz
f2=6 # in MHz
f2=f2*10**6 # in Hz
Cd= (C1-4*C2)/3 # in F
print "Self Capacitance of the coil = %0.f pF" %(Cd*10**12)
#Given data
C1= 1530 # in pF
C2= 162 # in pF
f1=1 # in MHz
f1=f1*10**6 # in Hz
f2=3 # in MHz
f2=f2*10**6 # in Hz
# f1= 1/(2*pi*sqrt(L*(C1+Cd)))
# f1= 1/(2*pi*sqrt(L*(C2+Cd))) and f2= 3*f1 so
Cd= (C1-9*C2)/8 # in pF
print "Self capacitance of the coil = %0.f pF" %Cd
#Given data
f= 450 # in kHz
f=f*10**3 # in Hz
C=250 # in pF
C=C*10**-12 # in F
Rsh= 0.75 # in ohm
Q= 105
omega= 2*pi*f # in radians/sec
# Formula f= 1/(2*pi*sqrt(L*C))
L= 1/((2*pi*f)**2*C) # in H
print "Inductance of the coil = %0.f µH" %(L*10**6)
R= omega*L/Q-Rsh # in ohm
print "Resistance of the coil = %0.2f ohm" %R
#Given data
f= 500 # in kHz
f=f*10**3 # in Hz
C=120 # in pF
C=C*10**-12 # in F
R= 5 # in ohm
r=0.02 # resistance used across the oscillatory circuit in ohm
omega= 2*pi*f # in radians/sec
Q_True= 1/(omega*C*R)
Q_indicated= 1/(omega*C*(R+r))
PerError= (Q_True-Q_indicated)*100/Q_True # in %
print "Percentage Error = %0.1f %%" %PerError
#Given data
f1= 800 # in kHz
f1=f1*10**3 # in Hz
f2= 2.5 # in MHz
f2=f2*10**6 # in Hz
C1=95 # in pF
C1=C1*10**-12 # in F
# L= 1/(omega1**2*(C1+Cd)) (i)
# L= 1/(omega2**2*Cd) (ii)
# From eq(i) and eq(ii)
Cd= f1**2*C1/(f2**2-f1**2) # in F
print "Self capacitance of the radio coil = %0.2f pF" %(Cd*10**12)
#Given data
f1= 1 # in MHz
f1=f1*10**6 # in Hz
f2= 2 # in MHz
f2=f2*10**6 # in Hz
C1=480 # in pF
C1=C1*10**-12 # in F
C2=90 # in pF
C2=C2*10**-12 # in F
R=10 # in ohm
omega1= 2*pi*f1 # in radians/sec
omega2= 2*pi*f2 # in radians/sec
# Part (i)
Cd= (C1-4*C2)/3 # in F
print "(i) : Self capacitance of the coil = %0.f pF" %(Cd*10**12)
# Part(ii)
Q_indicated1= 1/(omega1*(C1+Cd)*R)
print "(ii) : Indicated or effective Q for first measurement = %0.3f" %Q_indicated1
Q_True1= 1/(omega1*C1*R)
print "True Q for first measurement = %0.3f " %Q_True1
Q_indicated2= 1/(omega2*(C2+Cd)*R)
print "Indicated or effective Q for second measurement = %0.3f" %Q_indicated2
Q_True2= 1/(omega2*C2*R)
print "True Q for second measurement = %0.2f" %Q_True2