import math
#Variable Declaration
I=0.5 #in A
E1=500 #E+Ea in V
Ra=10 #in ohm
#Calculations
R1=E1/I #in ohm
R=R1-Ra #in ohm
#Result
print "R=",int(R),"ohm"
import math
#Variable Declaration
sensitivity=10**3 #in ohm/V
V=1000.0 #in V
R=990.0 #in ohm
Ra=10.0 #in ohm
supply_voltage=500 #in V
#Calculations
Rv=V*sensitivity #in ohm
R1=Rv*R/(Rv+R) #in ohm
voltmeter_reading=supply_voltage*R1/(Ra+R1) #in volt
ammeter_reading=supply_voltage/R1 #in A
#Results
print "Voltmeter Reading=",round(voltmeter_reading,1),"V"
print "Ammeter Reading=",round(ammeter_reading,1),"A"
import math
#For figure 7-1(a)
voltmeter_reading=495 #in V
ammeter_reading=0.5 #in A
R=voltmeter_reading/ammeter_reading #in ohm
print "For V=495 V,I=0.5 A, R=",R,"ohm"
#For figure 7-1(b)
voltmeter_reading=500 #in V
ammeter_reading=0.5 #in A
R=voltmeter_reading/ammeter_reading #in ohm
print "For V=500 V,I=0.5 A, R=",R,"ohm"
import math
#Variable Declaration
#Bridge Resistances
P=3.5*10**3 #in ohm
Q=7*10**3 #in ohm
S=5.51*10**3 #in ohm
#Calculations
R=S*P/Q #Equation for unknown resistance in a balanced bridge(ohm)
#When S=1 kilo ohm
S=1*10**3 #in ohm
R1=S*P/Q #in ohm
#When S=8 kilo ohm
S=8*10**3 #in ohm
R2=S*P/Q #in ohm
print "R=",round(R/1000,3),"kilo ohm"
print "Measurement Range is",round(R1),"ohm to ",round(R2/1000),"kilo ohm"
import math
#Variable Declaration
#Bridge Resistances
P=3.5*10**3 #in ohm
Q=7*10**3 #in ohm
S=5.51*10**3 #in ohm
R=2.755*10**3 #in ohm
p_accuracy=0.05 #in percentage
q_accuracy=0.05 #in percentage
s_accuracy=0.1 #in percentage
#Calculation
error_r=p_accuracy+q_accuracy+s_accuracy #in percentage
Rmax=R+R*error_r/100.0 #in ohm
Rmin=R-R*error_r/100.0 #in ohm
#Result
print "Error in R=±",round(error_r,1),"%"
print "R=",round(R/1000,3),"kilo ohm ±",round(error_r,1),"%"
print "R=",round(R/1000,3),"kilo ohm ±",round(R*error_r/100.0,1),"%"
print "R=",round(Rmin/1000,4),"kilo ohm to ",round(Rmax/1000,4),"kilo ohm"
import math
#Variable Declaration
P=3.5*10**3 #in ohm
Q=7*10**3 #in ohm
S=4*10**3 #in ohm
R=2*10**3 #in ohm
Eb=10
Ig=10**-6 #in A/mm
Rg=2.5*10**3 #in ohm
#Calculations
r=P*R/(P+R)+Q*S/(Q+S) #R=P||R+Q||S in ohm
dV=Ig*(r+Rg) # Smallest voltage change in V
Vr=Eb*R/(P+R) #Voltage across R(Voltage Divider Rule), in V
V=Vr+dV #in V
Vp=Eb-V #KVL
Ip=Vp/P #Ohm's Law
Ir=Ip
dR=round(V,5)/round(Ir,6)-R #in ohm
print "Minimum Change in R is",round(dR,1),"ohm"
import math
#Variable Declaration
S=0.10 #in ohm
Q=0.15 #in ohm(Approximately equal to 0.15)
#Result
print "R/P=S/Q= ",int(S*100),"/",int(Q*100)
import math
#Variable Declaration
E=10000 #in Volt
Iv=1.5*10**-6 #in A
rv=E/Iv #Volume resistance in ohm
#Surface leakage Resistance
It=5*10**-6 #in A
Is=It-Iv #KCL
rs=E/Is #Surface Resistance in ohm
#Results
print "Volume resistance=",'%.1e' %rv,"ohm"
print "Surface resistance=",'%.1e' %rs,"ohm"