Rs=10 #given source resistance Rs(Ohm)
RL=40 #given load resistance RL(Ohm)
Vin=15 #input voltage(V)
VBE=0.8 #base-emitter voltage drop(V)
Vz=9.1 #voltage across diode(V)
Vout=Vz+VBE #output voltage(V)
Is=1000*(Vin-Vout)/Rs #input current(mA)
IL=1000*Vout/RL #load current(mA)
IC=Is-IL #collector current(mA)
print 'Output voltage Vout = ',Vout,'V'
print 'input current Is = ',Is,'mA'
print 'load current IL = ',IL,'mA'
print 'collector current IC = ',IC,'mA'
Rs=10 #given source resistance Rs(Ohm)
RL=40 #given load resistance RL(Ohm)
Vin=15 #input voltage(V)
VBE=0.81 #base-emitter voltage drop(V)
Vz=6.2 #voltage across diode(V)
R1=750 #base input resistance(Ohm)
R2=250 #base input resistance(Ohm)
Vout=(Vz+VBE)*(R1+R2)/R1 #output voltage(V)
Is=1000*(Vin-Vout)/Rs #input current(mA)
IL=1000*Vout/RL #load current(mA)
IC=Is-IL #collector current(mA)
print 'Output voltage Vout = ',round(Vout,2),'V'
print 'input current Is = ',round(Is,2),'mA'
print 'load current IL = ',round(IL,2),'mA'
print 'collector current IC = ',round(IC,2),'mA'
Vout=9.35 #output voltage(V)
IL=234 #load current(mA)
Is=565 #input current(mA)
Vin=15.0 #input voltage(V)
Pout=Vout*IL/1000 #output power(W)
Pin=Vin*Is/1000 #input power(W)
eff=Pout/Pin #efficiency
preg=Pin-Pout #power dissipated by regulator(W)
print 'input power Pin = ',Pin,'W'
print 'Output power Pout = ',round(Pout,2),'W'
print 'Effifciency = ',round((eff*100),2),'%'
print'power dissipated by regulator = ',round(preg,2),'W'
Rs=10 #given source resistance Rs(Ohm)
RL=40 #given load resistance RL(Ohm)
Vin=15 #input voltage(V)
Vz=6.8 #voltage across diode(V)
R1=7.5*10**3 #base input resistance(Ohm)
R2=2.5*10**3 #base input resistance(Ohm)
Vout=Vz*(R1+R2)/R1 #output voltage(V)
Is=1000*(Vin-Vout)/Rs #input current(mA)
IL=1000*Vout/RL #load current(mA)
IC=Is-IL #collector current(mA)
print 'Output voltage Vout = ',round(Vout,2),'V'
print 'input current Is = ',round(Is,2),'mA'
print 'load current IL = ',round(IL,2),'mA'
print 'collector current IC = ',round(IC,2),'mA'
Is1=510 #input current in ex. 24-1 (mA)
Is2=565 #input current in ex. 24-2 (mA)
Is4=593 #input current in ex. 24-4 (mA)
Imax1=Is1 #maximum load current (mA)
Imax2=Is2 #maximum load current (mA)
Imax4=Is4 #maximum load current (mA)
print 'maximum load current Imax1 = ',Imax1,'mA'
print 'maximum load current Imax2 = ',Imax2,'mA'
print 'maximum load current Imax4 = ',Imax4,'mA'
VNL=9.91 #given VNL(V)
VFL=9.81 #given VFL(V)
VHL=9.94 #given VHL(V)
VLL=9.79 #given VLL(V)
LoR=(VNL-VFL)*100/VFL #Load regulation(%)
LiR=(VHL-VLL)*100/VLL #Line regulation(%)
print 'Load regulation = ',round(LoR,2),'%'
print 'Line regulation = ',round(LiR,2),'%'
RL=40.0 #given load resistance RL(Ohm)
VBE=0.7 #base-emitter voltage drop(V)
Vz=6.2 #voltage across diode(V)
R1=3.0 #base input resistance(KOhm)
R2=1.0 #base input resistance(KOhm)
Vin=15 #input voltage(V)
Vout=(Vz+VBE)*(R1+R2)/R1 #output voltage(V)
IC=Vout/RL #transistor current(A)
PD=(Vin-Vout)*IC #power dissipation(W)
print 'Output voltage Vout = ',Vout,'V'
print 'transistor current = load current = IC = ',IC*1000,'mA'
print 'Power dissipation PD = ',PD,'W'
Vout=9.2 #output voltage(V)
IL=230 #load current(mA)
Vin=15.0 #input voltage(V)
Pout=Vout*IL/1000 #output power(W)
Pin=Vin*IL/1000 #input power(W)
eff1=Pout/Pin #efficiency
eff2=Vout/Vin #efficiency
print 'input power Pin = ',Pin,'W'
print 'Output power Pout = ',Pout,'W'
print 'Effifciency 1= ',round((eff1*100),2),'%'
print 'Effifciency 2= ',round((eff2*100),2),'%'
RL=4.0 #given load resistance RL(Ohm)
Vz=5.6 #voltage across diode(V)
R1=2.7 #base input resistance(KOhm)
R2=2.2 #base input resistance(KOhm)
Vin=15 #input voltage(V)
B=100 #current gain
Vout=Vz*(R1+R2)/R1 #output voltage(V)
IL=Vout/RL #load current(A)
IB=IL/B #base current(A)
print 'Output voltage Vout = ',round(Vout,2),'V'
print 'Load current IL = ',round(IL,2),'A'
print 'base current IB = ',round((IB*1000),2),'mA'
VNL=10.16 #given VNL(V)
VFL=10.15 #given VFL(V)
VHL=10.16 #given VHL(V)
VLL=10.07 #given VLL(V)
LoR=(VNL-VFL)*100/VFL #Load regulation(%)
LiR=(VHL-VLL)*100/VLL #Line regulation(%)
print 'Load regulation = ',round(LoR,3),'%'
print 'Line regulation = ',round(LiR,2),'%'
RL=3.0 #given load resistance RL(Ohm)
Vz=4.7 #voltage across diode(V)
R11=1750 #base input resistance with max. potentiometer(Ohm)
R12=750 #base input resistance with min. potentiometer(Ohm)
R2=750 #base input resistance(Ohm)
Vin=22.5 #max. input voltage(V)
B=100 #current gain
Rs=820 #input side resistance(Ohm)
Vcl=0.6 #voltage across current limiting resistor(V)
Vcs=0.7 #voltage across current sensing resistor(V)
Vo=12.5 #regulated voltage given(V)
Iz=(Vin-Vz)/Rs #max. zener current(A)
Vout1=Vz*(R11+R2)/R11 #min. regulated output voltage(V)
Vout2=Vz*(R12+R2)/R12 #max. regulated output voltage(V)
IL=Vcl/RL #load current(A)
RL1=Vo/IL #load resistance(Ohm)
ISL=Vcs/RL #shorted-load current(A)
print 'maximum zener current Iz = ',round((Iz*1000),2),'mA'
print 'Load current IL = ',IL*1000,'mA'
print 'load resistance RL = ',RL1,'Ohm'
print 'shorted-load current ISL = ',round((ISL*1000),2),'mA'
Vout=12.0 #regulated output voltage(V)
RL=100.0 #given load resistance RL(Ohm)
C=1000*10**-6 #given capacitance(F)
f=120 #frequency(Hz)
RR_dB=72.0 #ripple rejection(dB)
IL=Vout/RL #load current(A)
VRi=IL/(f*C) #peak to peak input ripple (V)
RR=10**(RR_dB/20) #ripple rejection
VRo=VRi/RR #peak to peak output ripple (V)
print 'Load current IL = ',IL*1000,'mA'
print 'peak to peak input ripple = ',VRi,'V'
print 'peak to peak output ripple = ',round((VRo*1000),2),'mV'
R1=2.0 #given resistance(KOhm)
R2=22.0 #given resistance(KOhm)
R21=46.0 #given resistance increased(KOhm)
Vout1=1.25*(R1+R2)/R1 #output voltage(V)
Vout2=1.25*(R1+R21)/R1 #output voltage with increased R2(V)
print 'Output voltage Vout1 = ',Vout1,'V'
print 'output voltage with increased R2, Vout2 = ',Vout2,'V'
Vout=5.0 #output voltage(V)
Vin_min=7.5 #min. input voltage(V)
Vin_max=20.0 #max. input voltage(V)
eff_max=Vout/Vin_min #maximum efficiency
eff_min=Vout/Vin_max #minimum efficiency
print 'Minimum Effifciency = ',eff_min*100,'%'
print 'Maximum Effifciency = ',round((eff_max*100),2),'%'
R1=2.21 #given resistance(KOhm)
R2=2.8 #given resistance(KOhm)
R21=46.0 #given resistance increased(KOhm)
VREF=2.21 #Reference voltage(V)
Vout=VREF*(R1+R2)/R1 #output voltage(V)
print 'Output voltage Vout = ',Vout,'V'
print 'Input voltage should be 2V greater than output voltage So, Vin = 7 V'
R1=1 #given resistance(KOhm)
R2=5.79 #given resistance(KOhm)
VREF=2.21 #Reference voltage(V)
Vout=VREF*(R1+R2)/R1 #output voltage(V)
print 'Output voltage Vout = ',round(Vout,2),'V'