Tj=100 #junction temperature 1(C)
Vb=0.7 #Barrier potential(V)
Tamb=25 #Ambient temperature(C)
T1=0 #junction temperature 2(C)
Vd=-0.002*(Tj-Tamb) #Change in barrier potential(V)
Vbn=Vb+Vd #Barrier potential(V)
Vd1=-0.002*(T1-Tamb) #Change in barrier potential(V)
Vb1n=Vb+Vd1 #Barrier potential(V)
print 'Change in barrier potential = Vd =',Vd,'V'
print 'Brrier potential = Vbn =',Vbn,'V'
print 'For junction temperature 0 C'
print 'Change in barrier potential = Vd1 =',Vd1,'V'
print 'New barrier potential = Vb1n =',Vb1n,'V'
T2=100 #Temperature(C)
T1=25 #Temperature(C)
Isat1=5 #Current(nA)
Td=T2-T1 #Temperature change(C)
Is1=(2**7)*Isat1 #Current(nA)
Is2=(1.07**5)*Is1 #Current(nA)
print 'Change in temperature = Td = T2-T1 =',Td,'C'
print 'For first 70 C change seven doublings are there.'
print 'Is1 = (2^7)*Isat1 =',Is1,'nA'
print 'For additional 5 C, 7% per C'
print 'Is2 = ',round(Is2,2),'nA'
Isl=2*(10**-9) #surface leakage current(nA)
Vr=25 #Reverse voltage(V)
Vr1=35 #Reverse voltage(V)
Rsl=Vr/Isl #surface leakage reistance(Ohm)
Isl1=(Vr1/Rsl)*(10**9) #surface leakage current(nA)
print 'surface-leakage reistance Rsl = Vr/Isl =',Rsl*10**-6,'MOhm'
print 'for Vr1 = 35 V,'
print 'surface-leakage reistance Isl1 = Vr1/Rsl =',Isl1,'nA'