Ic=10 #collector current(mA)
Ib=40.0/1000.0 #base current (mA)
Bdc=Ic/Ib #Current gain
print 'Current gain Bdc =',Bdc
Bdc=175 #current gain
Ib=0.1 #base current (mA)
Ic=Bdc*Ib #Current gain
print 'Collector current Ic =',Ic,'mA'
Bdc=135.0 #current gain
Ic=2.0 #collector current (mA)
Ib=(Ic/Bdc)*1000 #Current gain
print 'Base current Ib =',round(Ib,2),'uA'
Vbb=2 #base source voltage(V)
Rb=100 #base resistor (KOhm)
Bdc=200 #current gain
Vbe=0.7 #base-emitter voltage drop(V)
Ib=((Vbb-Vbe)/Rb)*1000 #base current(uA)
Ic=Bdc*Ib/1000 #Collector current(mA)
print 'Base current Ib =',Ib,'uA'
print 'Collector current Ic =',Ic,'mA'
VBB=10 #Base voltage (V)
RC=2 #Collector resistance(KOhm)
VCC=10 #collector voltage(V)
Bdc=300 #current gain
RB=1 #base resistance (MOhm)
VBE=0.7 #base-emitter voltage drop(V)
IB=((VBB-VBE)/RB) #base current(uA)
IC=Bdc*IB/1000 #Collector current(mA)
VCE=VCC-(IC*RC) #Collector-emitter voltage(V)
PD=VCE*IC #Collector power dissipation(W)
print 'Base current IB =',IB,'uA'
print 'Collector current IC =',IC,'mA'
print 'Collector-emitter voltage VCE =',VCE,'V'
print 'Power dissipation PD = ',round(PD,2),'W'
VBB=10 #Base voltage (V)
RC=470 #Collector resistance(Ohm)
VCC=10 #collector voltage(V)
Bdc=300 #current gain
VCE=5.4535 #collector-emitter voltage shown on multisim screen
RB=330 #base resistance (KOhm)
VBE=0.7 #base-emitter voltage drop
IB=((VBB-VBE)/RB)*1000 #base current(uA)
V=VCC-VCE #voltage across Rc
IC=(V/RC)*1000 #Collector current(mA)
Bdc=int((IC/IB)*1000) #Collector-emitter voltage
print 'Base current IB =',round(IB,2),'uA'
print 'voltage across Rc VRc = ',round(V,2),'V'
print 'Collector current IC =',round(IC,2),'mA'
print 'Current gain Bdc = ',Bdc
VBB=15 #Base voltage (V)
RC=3.6 #Collector resistance(KOhm)
VCC=15 #collector voltage(V)
Bdc=100 #current gain
RB=470 #base resistance (KOhm)
VBE=0 #base-emitter voltage drop(V)
IB=((VBB-VBE)/float(RB))*1000 #base current(uA)
IC=Bdc*IB/1000 #Collector current(mA)
VCE=VCC-(IC*RC) #Collector-emitter voltage(V)
IE=IC+(IB/1000) #emitter current(mA)
print 'Base current IB =',round(IB,2),'uA'
print 'Collector current IC =',round(IC,2),'mA'
print 'Collector-emitter voltage VCE = ',round(VCE,2),'V'
print 'Emitter current IE =',round(IE,2),'mA'
VBB=15 #Base voltage (V)
RC=3.6 #Collector resistance(KOhm)
VCC=15 #collector voltage(V)
Bdc=100 #current gain
RB=470 #base resistance (KOhm)
VBE=0.7 #base-emitter voltage drop(V)
IB=((VBB-VBE)/float(RB))*1000 #base current(uA)
IC=Bdc*IB/1000 #Collector current(mA)
VCE=VCC-(IC*RC) #Collector-emitter voltage(V)
print 'Base current IB =',round(IB,2),'uA'
print 'Collector current IC =',round(IC,2),'mA'
print 'Collector-emitter voltage VCE = ',round(VCE,2),'V'
VBB=15 #Base voltage (V)
RC=3.6 #Collector resistance(KOhm)
VCC=15 #collector voltage(V)
Bdc=100 #current gain
RB=470 #base resistance (KOhm)
VBE=1 #base-emitter voltage drop(V)
IB=((VBB-VBE)/float(RB))*1000 #base current(uA)
IC=Bdc*IB/1000 #Collector current(mA)
VCE=VCC-(IC*RC) #Collector-emitter voltage(V)
print 'Base current IB =',round(IB,2),'uA'
print 'Collector current IC =',round(IC,2),'mA'
print 'Collector-emitter voltage VCE = ',round(VCE,2),'V'
VBB=5 #Base voltage (V)
RC=3.6 #Collector resistance(KOhm)
VCC=15 #collector voltage(V)
Bdc=100 #current gain
RB=470 #base resistance (KOhm)
VBE1=0 #base-emitter voltage drop1(V)
VBE2=0.7 #base-emitter voltage drop2(V)
VBE3=1 #base-emitter voltage drop3(V)
IB1=((VBB-VBE1)/float(RB))*1000 #base current1(uA)
IC1=Bdc*IB1/1000 #Collector current1(mA)
VCE1=VCC-(IC1*RC) #Collector-emitter voltage1(V)
IB2=((VBB-VBE2)/float(RB))*1000 #base current2(uA)
IC2=Bdc*IB2/1000 #Collector current2(mA)
VCE2=VCC-(IC2*RC) #Collector-emitter voltage2(V)
IB3=((VBB-VBE3)/float(RB))*1000 #base current3(uA)
IC3=Bdc*IB3/1000 #Collector current3(mA)
VCE3=VCC-(IC3*RC) #Collector-emitter voltage3(V)
print 'Base current IB1 =',round(IB1,2),'uA'
print 'Collector current IC1 =',round(IC1,2),'mA'
print 'Collector-emitter voltage VCE1 = ',round(VCE1,2),'V'
print 'Base current IB2 =',round(IB2,2),'uA'
print 'Collector current IC2 =',round(IC2,2),'mA'
print 'Collector-emitter voltage VCE2 = ',round(VCE2,2),'V'
print 'Base current IB3 =',round(IB3,2),'uA'
print 'Collector current IC3 =',round(IC3,2),'mA'
print 'Collector-emitter voltage VCE3 = ',round(VCE3,2),'V'
VCE=10 #Collector-emitter voltage(V)
IC=20 #Collector current(mA)
T=25 #Ambient temperature(deg C)
PD = VCE*IC #Power dissipation(mW)
print 'Power dissipation PD = ',PD,'mW'
print 'for 25 deg C, power rating is 625 mW So, transistor is well within power rating.'
T1=100 #Ambient temperature(deg C)
T2=25 #Reference temperature(deg C)
mf=5 #Multiply factor(mW/deg C)
Pr=625 #power rating(mW)
Td=T1-T2 #Temperature difference(deg C)
Pd=mf*Td #Difference in power(mW)
PDmax=Pr-Pd #Maximum power dissipation(mW)
print 'Maximum Power dissipation PDmax = ',PDmax,'mW'
print 'for 25 deg C, power rating is 625 mW So, transistor is yet within power rating.'