import math
f=20 #frequency(Hz)
R=2 #Resistance(KOhm)
XC=0.1*R #Capacitive reactance(Ohm)
C=(1/(2*math.pi*f*XC))*1000 #Capacitance(uF)
print 'Capacitance C = ',round(C,2),'uF'
import math
f=1 #frequency(KHz)
R1=600 #Resistance1(Ohm)
R2=1000 #Resistance2(Ohm)
RTH=R1*R2/(R1+R2) #Thevenin resistance(Ohm)
XC=0.1*RTH #Capacitive reactance(Ohm)
C=(1/(2*math.pi*f*XC))*1000 #Capacitance(uF)
print 'Capacitance C = ',round(C,2),'uF'
VCC=10 #collector voltage(V)
RE=1 #Emitter resistance(KOhm)
VBE=0.7 #Base-emitter voltage drop(V)
VEE=2 #Emitter supply voltage(V)
IEQ=(VEE-VBE)/RE #Q point emitter current(mA)
iepp=0.1*IEQ*1000 #small signal emitter current(uA)
print 'Q point emitter current IEQ = ',IEQ,'mA'
print 'Small signal emitter current iepp = ',iepp,'uApp'
VCC=30 #Supply voltage(V)
RC=5 #Collector resistance (KOhm)
RL=100 #Emitter resistance (KOhm)
RB=1 #Base resistance (MOhm)
VBE=0.7 #Base-emitter voltage drop(V)
Bdc=100 #current gain
IB=(VCC-VBE)/RB #Base current(mA)
IE=Bdc*IB/1000 #Emitter current(mA)
re=25/IE #AC resistance(Ohm)
print 'Emitter current IE = ',IE,'mA'
print 'AC resistance re\' = ',round(re,2),'Ohm'
VCC=10 #collector voltage(V)
RC=3.6 #Collector resistance (KOhm)
RE=1 #Emitter resistance (KOhm)
R1=10 #Base resistance1 (KOhm)
R2=2.2 #Base resistance2 (KOhm)
VBE=0.7 #Base-emitter voltage drop(V)
VBB=(R2/(R1+R2))*VCC #Base voltage(V)
VE=VBB-VBE #Emitter voltage(V)
IE=VE/RE #Emitter current(mA)
re=25/IE #AC resistance(Ohm)
print 'Emitter current IE = ',round(IE,2),'mA'
print 'AC resistance re\' = ',round(re,2),'Ohm'
VCC=10 #collector voltage(V)
RC=3.6 #Collector resistance (KOhm)
RE=1 #Emitter resistance (KOhm)
RB=2.7 #Base resistance (KOhm)
VBE=0.7 #Base-emitter voltage drop(V)
VEE=2 #emitter voltage(V)
VE=VEE-VBE #Emitter to ground voltage(V)
IE=VE/RE #Emitter current(mA)
re=25/IE #AC resistance(Ohm)
print 'Emitter current IE = ',IE,'mA'
print 'AC resistance re\' = ',round(re,2),'Ohm'