Chapter1-Common Electronic Materials and Properties

Ex1-pg23

In [1]:
##Ex1.1
#calcualte fusing current for given values
import math
print("I = K(d^1.5)") ##formula used for fusing current
d=0.0031
print"%s %.3f %s"%("d = ",d,"inches") ##initializing values of diameter
I1=10244*(d**1.5);
I2=7585*(d**1.5);
I3=5320*(d**1.5); 
I4=3148*(d**1.5); I5=1642*(d**1.5)  ##calculation for fusing current
print"%s %.2f %s"%("for Copper, I = 10244*(d^1.5) = ",I1,"Amp.")
print"%s %.2f %s"%("for Aluminum, I = 7585*(d^1.5) = ",I2,"Amp.")
print"%s %.2f %s"%("for Silver, I = 5320*(d^1.5) = ",I3,"Amp.")
print"%s %.2f %s"%("for Iron, I = 3148*(d^1.5) = ",I4,"Amp.")
print"%s %.2f %s"%("for Tin, I = 1642*(d^1.5) = ",I5,"Amp.")
I = K(d^1.5)
d =  0.003 inches
for Copper, I = 10244*(d^1.5) =  1.77 Amp.
for Aluminum, I = 7585*(d^1.5) =  1.31 Amp.
for Silver, I = 5320*(d^1.5) =  0.92 Amp.
for Iron, I = 3148*(d^1.5) =  0.54 Amp.
for Tin, I = 1642*(d^1.5) =  0.28 Amp.

Ex2-pg23

In [2]:
##Ex1.2
#calculate fusing current for given values
print("fusing current, I = K(d**1.5) Amp.")##formula used for fusing current
d=0.0201
print"%s %.2f %s"%("d = ",d,"inches") ##initializing value of diameter
I1=10244*(d**1.5);I2=7585*(d**1.5); I3=5320*(d**1.5); I4=3148*(d**1.5); I5=1642*(d**1.5)  ##calculation for fusing current
print"%s %.2f %s"%("for Copper, I = 10244*(d**1.5) = ",I1,"Amp.")
print"%s %.2f %s"%("for Aluminum, I = 7585*(d**1.5) = ",I2,"Amp.")
print"%s %.2f %s"%("for Silver, I = 5320*(d**1.5) = ",I3,"Amp.")
print"%s %.2f %s"%("for Iron, I = 3148*(d**1.5) = ",I4,"Amp.")
print"%s %.2f %s"%("for Tin, I = 1642*(d**1.5) = ",I5,"Amp.")


## note : calculation for fusing current of Iron is wrong.
fusing current, I = K(d**1.5) Amp.
d =  0.02 inches
for Copper, I = 10244*(d**1.5) =  29.19 Amp.
for Aluminum, I = 7585*(d**1.5) =  21.61 Amp.
for Silver, I = 5320*(d**1.5) =  15.16 Amp.
for Iron, I = 3148*(d**1.5) =  8.97 Amp.
for Tin, I = 1642*(d**1.5) =  4.68 Amp.

Ex3-pg24

In [3]:
##Ex1.3
#calculate for fusing current in all four cases
import math
print("fusing current, I = K(d**1.5) Amp.") ##formula used for fusing current
print("(a)") 
d=0.0159
print"%s %.2f %s"%("d = ",d,"inches") ##initializing value of diameter
I1=10244*(d**1.5);I2=7585*(d**1.5); I3=5320*(d**1.5); I4=3148*(d**1.5); I5=1642*(d**1.5)  ##calculation for fusing current
print"%s %.2f %s"%("for Copper, I = 10244*(d**1.5) = ",I1,"Amp.")
print"%s %.2f %s"%("for Aluminum, I = 7585*(d**1.5) = ",I2,"Amp.")
print"%s %.2f %s"%("for Silver, I = 5320*(d**1.5) = ",I3,"Amp.")
print"%s %.2f %s"%("for Iron, I = 3148*(d**1.5) = ",I4,"Amp.")
print"%s %.2f %s"%("for Tin, I = 1642*(d**1.5) = ",I5,"Amp.")


print("(b)")
d=0.0063
print"%s %.2f %s"%("d = ",d,"inches") ##initializing value of diameter
I1=10244*(d**1.5);I2=7585*(d**1.5); I3=5320*(d**1.5); I4=3148*(d**1.5); I5=1642*(d**1.5)  ##calculation for fusing current
print"%s %.2f %s"%("for Copper, I = 10244*(d**1.5) = ",I1,"Amp.")
print"%s %.2f %s"%("for Aluminum, I = 7585*(d**1.5) = ",I2,"Amp.")
print"%s %.2f %s"%("for Silver, I = 5320*(d**1.5) = ",I3,"Amp.")
print"%s %.2f %s"%("for Iron, I = 3148*(d**1.5) = ",I4,"Amp.")
print"%s %.2f %s"%("for Tin, I = 1642*(d**1.5) = ",I5,"Amp.")


print("(c)")
d=0.0403
print"%s %.2f %s"%("d = ",d,"inches") ##initializing value of diameter
I1=10244*(d**1.5);I2=7585*(d**1.5); I3=5320*(d**1.5); I4=3148*(d**1.5); I5=1642*(d**1.5)  ##calculation for fusing current
print"%s %.2f %s"%("for Copper, I = 10244*(d**1.5) = ",I1,"Amp.")
print"%s %.2f %s"%("for Aluminum, I = 7585*(d**1.5) = ",I2,"Amp.")
print"%s %.2f %s"%("for Silver, I = 5320*(d**1.5) = ",I3,"Amp.")
print"%s %.2f %s"%("for Iron, I = 3148*(d**1.5) = ",I4,"Amp.")
print"%s %.2f %s"%("for Tin, I = 1642*(d**1.5) = ",I5,"Amp.")


print("(d)")
d=0.0452
print"%s %.2f %s"%("d = ",d,"inches") ##initializing value of diameter
I1=10244*(d**1.5);I2=7585*(d**1.5); I3=5320*(d**1.5); I4=3148*(d**1.5); I5=1642*(d**1.5)  ##calculation for fusing current
print"%s %.2f %s"%("for Copper, I = 10244*(d**1.5) = ",I1,"Amp.")
print"%s %.2f %s"%("for Aluminum, I = 7585*(d**1.5) = ",I2,"Amp.")
print"%s %.2f %s"%("for Silver, I = 5320*(d**1.5) = ",I3,"Amp.")
print"%s %.2f %s"%("for Iron, I = 3148*(d**1.5) = ",I4,"Amp.")
print"%s %.2f %s"%("for Tin, I = 1642*(d**1.5) = ",I5,"Amp.")


print("(e)")
d=0.0508
print"%s %.2f %s"%("d = ",d,"inches") ##initializing value of diameter
I1=10244*(d**1.5);I2=7585*(d**1.5); I3=5320*(d**1.5); I4=3148*(d**1.5); I5=1642*(d**1.5)  ##calculation for fusing current
print"%s %.2f %s"%("for Copper, I = 10244*(d**1.5) = ",I1,"Amp.")
print"%s %.2f %s"%("for Aluminum, I = 7585*(d**1.5) = ",I2,"Amp.")
print"%s %.2f %s"%("for Silver, I = 5320*(d**1.5) = ",I3,"Amp.")
print"%s %.2f %s"%("for Iron, I = 3148*(d**1.5) = ",I4,"Amp.")
print"%s %.2f %s"%("for Tin, I = 1642*(d**1.5) = ",I5,"Amp.")


print("(f)")
d=0.162
print"%s %.2f %s"%("d = ",d,"inches") ##initializing value of diameter
I1=10244*(d**1.5);I2=7585*(d**1.5); I3=5320*(d**1.5); I4=3148*(d**1.5); I5=1642*(d**1.5)  ##calculation for fusing current
print"%s %.2f %s"%("for Copper, I = 10244*(d**1.5) = ",I1,"Amp.")
print"%s %.2f %s"%("for Aluminum, I = 7585*(d**1.5) = ",I2,"Amp.")
print"%s %.2f %s"%("for Silver, I = 5320*(d**1.5) = ",I3,"Amp.")
print"%s %.2f %s"%("for Iron, I = 3148*(d**1.5) = ",I4,"Amp.")
print"%s %.2f %s"%("for Tin, I = 1642*(d**1.5) = ",I5,"Amp.")



## note : in part (e) ... calculation for fusing current of silver is wrong.
## note : in part (f) ... calculation for fusing current of Iron is wrong.
fusing current, I = K(d**1.5) Amp.
(a)
d =  0.02 inches
for Copper, I = 10244*(d**1.5) =  20.54 Amp.
for Aluminum, I = 7585*(d**1.5) =  15.21 Amp.
for Silver, I = 5320*(d**1.5) =  10.67 Amp.
for Iron, I = 3148*(d**1.5) =  6.31 Amp.
for Tin, I = 1642*(d**1.5) =  3.29 Amp.
(b)
d =  0.01 inches
for Copper, I = 10244*(d**1.5) =  5.12 Amp.
for Aluminum, I = 7585*(d**1.5) =  3.79 Amp.
for Silver, I = 5320*(d**1.5) =  2.66 Amp.
for Iron, I = 3148*(d**1.5) =  1.57 Amp.
for Tin, I = 1642*(d**1.5) =  0.82 Amp.
(c)
d =  0.04 inches
for Copper, I = 10244*(d**1.5) =  82.88 Amp.
for Aluminum, I = 7585*(d**1.5) =  61.36 Amp.
for Silver, I = 5320*(d**1.5) =  43.04 Amp.
for Iron, I = 3148*(d**1.5) =  25.47 Amp.
for Tin, I = 1642*(d**1.5) =  13.28 Amp.
(d)
d =  0.05 inches
for Copper, I = 10244*(d**1.5) =  98.44 Amp.
for Aluminum, I = 7585*(d**1.5) =  72.89 Amp.
for Silver, I = 5320*(d**1.5) =  51.12 Amp.
for Iron, I = 3148*(d**1.5) =  30.25 Amp.
for Tin, I = 1642*(d**1.5) =  15.78 Amp.
(e)
d =  0.05 inches
for Copper, I = 10244*(d**1.5) =  117.29 Amp.
for Aluminum, I = 7585*(d**1.5) =  86.85 Amp.
for Silver, I = 5320*(d**1.5) =  60.91 Amp.
for Iron, I = 3148*(d**1.5) =  36.04 Amp.
for Tin, I = 1642*(d**1.5) =  18.80 Amp.
(f)
d =  0.16 inches
for Copper, I = 10244*(d**1.5) =  667.95 Amp.
for Aluminum, I = 7585*(d**1.5) =  494.57 Amp.
for Silver, I = 5320*(d**1.5) =  346.88 Amp.
for Iron, I = 3148*(d**1.5) =  205.26 Amp.
for Tin, I = 1642*(d**1.5) =  107.06 Amp.

Ex4-pg25

In [4]:
##Ex1.4
#calculate resistance for given resistivity
import math
A=0.5189*10**-6##wire cross sectional area
rho=1.725*10**-8##resistivity
l=100 ##wire length
print"%s %.3e %s"%("A =",A,"merer square") 
print"%s %.2e %s"%("rho =",rho,"ohm-m")
print"%s %.2f %s"%("l =",l,"m")
print"%s %.2f %s"%("R = rho*l/A = ",rho*l/A,"ohm") ##resistance
A = 5.189e-07 merer square
rho = 1.73e-08 ohm-m
l = 100.00 m
R = rho*l/A =  3.32 ohm

Ex5-pg26

In [5]:
##Ex1.5
#calculate resistance wire
import  math
A=0.2588*10**-6##wire cross-sectional area
rho=1.725*10**-8##resistivity
l=100 ##wire length
print"%s %.2e %s"%("A =",A,"merer square")
print"%s %.2e %s"%("rho =",rho,"ohm-m")
print"%s %.2f %s"%("l =",l,"m")
print"%s %.2f %s"%("R = rho*l/A = ",rho*l/A,"ohm") ##resistance of wire
A = 2.59e-07 merer square
rho = 1.73e-08 ohm-m
l = 100.00 m
R = rho*l/A =  6.67 ohm

Ex6-pg26

In [6]:
##Ex1.6
#calculate resistance at temperature at T2
R1 = 14##resistance at temperature T1 
alpha=0.005
T1=20;##initial temperature
T2=120 ##final temperature
print"%s %.2f %s %.2f %s %.2f %s%.2f %s "%("R1 = ",R1, "ohm"and" alpha = ",alpha,""and " T1 = ",T1,"degreeC"and "T2 = ",T2,"degreeC")
print"%s %.2f %s"%("R2 = R1(1+(alpha*(T1-T2))) = ",R1*(1+(alpha*(T2-T1))),"ohm") ##resistance at temperature T2
R1 =  14.00  alpha =  0.01  20.00 T2 = 120.00 degreeC 
R2 = R1(1+(alpha*(T1-T2))) =  21.00 ohm

Ex7-pg26

In [5]:
##EX1.7
#calculate force of electron charge
import math
Ex=3;Ey=4;Ez=2##electric field
e=1.6*10**-19 ##electorn charge
print("E = 3ax + 4ay + 2az k V/m")
print("e = 1.6*10**-19 C")
print"%s %.2e %s %.2e %s %.2e %s "%(" F=eE = ",Ex*e*1000,"ax + ",Ey*e*1000,"ay + ",Ez*e*1000,"az N") ##force
#or

f=10**-16* math.sqrt(74.24)
print"%s %.2e %s "%("f=",f,"N")
E = 3ax + 4ay + 2az k V/m
e = 1.6*10**-19 C
 F=eE =  4.80e-16 ax +  6.40e-16 ay +  3.20e-16 az N 
f= 8.62e-16 N 

Ex8-pg26

In [6]:
##Ex1.8
#calculate elctric field
import math
F=0.1*10**-12##force applied
e = 1.6*10**-19##electron charge
print"%s %.2e %s  %.2e %s "%("F= ",F,"N "and " e = ",e,"C")
print"%s %.2e %s"%("E = F/e =",F/e,"V/m")##electric field
F=  1.00e-13  e =   1.60e-19 C 
E = F/e = 6.25e+05 V/m

Ex9-pg26

In [8]:
##Ex1.9
#calculate charge of electron
import math
F = 3*(10**-12) ##force applied
E = 5*(10**-6)  ##electric field
print"%s %.2e %s"%("F = ",F,"N")
print"%s %.2e %s"%("E = ",E,"V/m")
print"%s %.2e %s"%("Q= F/E = ",F/E,"C") ##chage

#converted in units
F =  3.00e-12 N
E =  5.00e-06 V/m
Q= F/E =  6.00e-07 C

Ex10-pg27

In [10]:
##Ex1.10
#calculate force 
import math
B = 2*10**-6 ##magnetic flux density
V = 4*10**6  ##electron velocity
e= 1.6*10**-19##elcetron charge
print"%s %.2e %s"%("B =",B,"ax wb/m.sq")
print"%s %.2f %s"%("V =",V,"az m/s")
print"%s %.3e %s"%("e = ",e, "C")
print"%s %.2e %s"%("F = e[VxB] =",e*V*B,"ay N")##force
B = 2.00e-06 ax wb/m.sq
V = 4000000.00 az m/s
e =  1.600e-19 C
F = e[VxB] = 1.28e-18 ay N

Ex11-pg27

In [11]:
##Ex1.11
#calculate force on electron due to field
import math
Hx = 1*10**-3  ##magnetic field in x-axis
Hy = 2*10**-3  ##magnetic field in y-axis
V = (4*10**6)  ##electron velocity
micro_not=(4*math.pi*(10**-7)) ##permitivity in vaccum
e=1.6*10**-19  ##charge of electorn
print"%s %.2e %s %.2e %s "%(" H = ",Hx,"ax  + ",Hy,"ay A/m")
print"%s %.2f %s"%("V = ",V,"ay m/s")
Bx = micro_not*Hx; By = micro_not*Hy ##magnetic flux density
print"%s %.2e %s %.2e %s "%("B = micro_not*H = ",Bx,"ax + ",By,"ay wb/m.sq")
print"%s %.2e %s "%("F = e[VxB] = ",e*V*Bx,"az N") ##force on electron due to field


## note : there is a misprint in the textbook for the above problem
 H =  1.00e-03 ax  +  2.00e-03 ay A/m 
V =  4000000.00 ay m/s
B = micro_not*H =  1.26e-09 ax +  2.51e-09 ay wb/m.sq 
F = e[VxB] =  8.04e-22 az N 

Ex12-pg28

In [6]:
##Ex1.12
import math
n = 5.*10**22##number of atoms in silicon/cm_cube
donors = 10**-7 ##donor atoms
print'%s %.2e %s'%("n = ",(n)," /cm.cube")
print'%s %.2e %s'%("donors = ",(donors),"")
print'%s %.2e %s'%("ND = ",(n*donors)," /cm.cube") ##donor atom concentration
n =  5.00e+22  /cm.cube
donors =  1.00e-07 
ND =  5.00e+15  /cm.cube

Ex13-pg28

In [1]:
##Ex1.13
import math
ND =5.*10**16##donor atom concentration
print'%s %.2e %s'%("n = ",(ND),"/cm.cube") ##free electrons
#approx
n =  5.00e+16 /cm.cube

Ex14-pg28

In [3]:
##Ex1.14
import math
ni = 1.5*10**10 ##intrinsic concentration
ND = 5.*10**16 ##donor atom concentration
print'%s %.2e %s'%("ni =",(ni),"/cm.cube")
print'%s %.2e %s'%("ND = ",(ND)," /cm.cube")
print'%s %.2e %s'%("p = (ni^2)/ND = ",((ni**2)/ND),"atom/cm.cube") ##hole concentration
ni = 1.50e+10 /cm.cube
ND =  5.00e+16  /cm.cube
p = (ni^2)/ND =  4.50e+03 atom/cm.cube

Ex15-pg28

In [8]:
##Ex1.15
import math
ni = 1.52*10**10 ##intrinsic concentration
e=1.6*10**-19 ##charge of electron
micro_n = 1350.; micro_p = 480. ## charge mobility
print'%s %.2e %s'%("e = ",(e),"C")
print'%s %.2e %s'%("ni = pi =",(ni),"/cm.cube")
print'%s %.2f %s'%("micro_n = ",(micro_n),"cm.sq/V-s")
print'%s %.2f %s'%("micro_p = ",(micro_p),"cm.sq/V-s")
print'%s %.2e %s'%("sigma = e(micro_n*ni + micro_p*pi ) =",(e*(micro_n*ni + micro_p*ni)),"mho/cm") ##conductivity
print'%s %.2e %s'%("rho = 1/sigma =",(1/(e*(micro_n*ni + micro_p*ni))),"ohm-cm") ##resistivity
e =  1.60e-19 C
ni = pi = 1.52e+10 /cm.cube
micro_n =  1350.00 cm.sq/V-s
micro_p =  480.00 cm.sq/V-s
sigma = e(micro_n*ni + micro_p*pi ) = 4.45e-06 mho/cm
rho = 1/sigma = 2.25e+05 ohm-cm

Ex16-pg29

In [9]:
##Ex1.16
import math
ni = 2.5*(10**13) ##intrinsic concentration
donor = 10**-7 ##donor atoms
ND = 4.41*(10**22)*(10**-7) ##donor atom concentration
e = 1.6*(10**-19) ##electron charge
micro_n = 3800.; micro_p = 1800. ##charge mobility
print'%s %.2e %s'%("ni =",(ni)," /cm.cube")
print'%s %.2e %s'%("donor = ",(donor),"")
print'%s %.2e %s'%("n = ND =",(ND)," /cm.cube")
print'%s %.2e %s'%("p = (ni^2)/ND = ",((ni**2)/ND)," /cm.cube") ##hole concentration
print("micro_n = 3800 cm.sq/V-s; micro_p = 1800 cm.sq/V-s")
sigma = ni*e*(micro_n+micro_p) ##conductivity
print'%s %.2f %s'%("sigma = ni*e(micro_n + micro_p) = ",(sigma),"mho/cm")
#conveted into units
ni = 2.50e+13  /cm.cube
donor =  1.00e-07 
n = ND = 4.41e+15  /cm.cube
p = (ni^2)/ND =  1.42e+11  /cm.cube
micro_n = 3800 cm.sq/V-s; micro_p = 1800 cm.sq/V-s
sigma = ni*e(micro_n + micro_p) =  0.02 mho/cm

Ex17-pg29

In [10]:
##Ex1.17
import math
ni = 2.5*10**19 ##intrinsic concentration
NA = 10**21 ##acceptor atom concentration
print'%s %.2e %s'%("ni = ",(ni)," /m.cube")
print'%s %.2e %s'%("NA = ",(NA)," /m.cube ")
print'%s %.2e %s'%("np = (ni^2)/ NA =",((ni**2)/NA),"e/m.cube") ##electron concentration
##textbook has not calcutated for hole concentration
ni =  2.50e+19  /m.cube
NA =  1.00e+21  /m.cube 
np = (ni^2)/ NA = 6.25e+17 e/m.cube

Ex18-pg30

In [12]:
##Ex1.18
import math
micro_p = 1800. ##hole mobility
rho_p = 1. ##resistivity
e = 1.6*10**-19 ##electorn charge
print'%s %.2f %s'%("micro_p =",(micro_p)," cm.sq/V-s")
print'%s %.2f %s'%("rho_p = ",(rho_p),"ohm-cm")
print'%s %.2e %s'%("e = ",(e),"C")
print'%s %.2e %s'%("pp = 1/(e*micro_p*rho_p) = ",(1/(e*micro_p*rho_p))," holes/cm.cube") ##number of trivalent impurity
#due to round off error
micro_p = 1800.00  cm.sq/V-s
rho_p =  1.00 ohm-cm
e =  1.60e-19 C
pp = 1/(e*micro_p*rho_p) =  3.47e+15  holes/cm.cube

Ex19-pg30

In [14]:
##Ex1.19
import math
micro_n = 1300. ##eletron mobility
rho_n = 2. ##resistivity
e = 1.6*10**-19 ##electron charge
print'%s %.2f %s'%("micro_n =",(micro_n)," cm.sq/V-s")
print'%s %.2f %s'%("rho_n = ",(rho_n),"ohm-cm")
print'%s %.2e %s'%("e",(e),"C")
print'%s %.2e %s'%("nn = 1/(e*micro_n*rho_n) = ",(1/(e*micro_n*rho_n))," e/cm.cube") ##number of pentavalent impurity
micro_n = 1300.00  cm.sq/V-s
rho_n =  2.00 ohm-cm
e 1.60e-19 C
nn = 1/(e*micro_n*rho_n) =  2.40e+15  e/cm.cube

Ex20-pg30

In [16]:
##Ex1.20
import math
EGo = 1.1 ##energy band gap
micro_n = 0.13 ##electron mobility
micro_p = 0.05 ##hole mobility
N = 3.*10**25 ##atom concentration
K = 1.38*10**-23 ##Boltzmann constant
T = 300. ##room temperature
e=1.6*10**-19##electron charge
print'%s %.2f %s %.2e %s '%("EGo = ",(EGo),"eV = ",(EGo*e),"J")
print'%s %.2f %s'%("micro_n = ",(micro_n)," m.sq/V-s")
print'%s %.2f %s'%("micro_p = ",(micro_p),"m.sq/V-s")
print'%s %.2e %s'%("N = ",(N)," /m.cube")
print'%s %.2f %s'%("T = ",(T),"degree_K")
print'%s %.2e %s'%("K = ",(K),"J/K")
print'%s %.2e %s'%("ni = N*exp(-(EGo/(2*T*K))) = ",(N*math.exp(-(EGo*e/(2*T*K))))," /m.cube") ##intrinsic concentration
ni = N*math.exp(-(EGo*e/(2*T*K)))
print'%s %.2e %s'%("sigma = ni*e(micro_n+micro_p) = ",(ni*e*(micro_n+micro_p)),"mho/m") ##conductivity
EGo =  1.10 eV =  1.76e-19 J 
micro_n =  0.13  m.sq/V-s
micro_p =  0.05 m.sq/V-s
N =  3.00e+25  /m.cube
T =  300.00 degree_K
K =  1.38e-23 J/K
ni = N*exp(-(EGo/(2*T*K))) =  1.76e+16  /m.cube
sigma = ni*e(micro_n+micro_p) =  5.07e-04 mho/m

Ex21-pg31

In [17]:
##Ex1.21
import math
K = 1.38*10**-23 ##Boltzmann constant
e = 1.6*10**-19 ##electron charge
T = 300. ##room temperature
print'%s %.2e %s'%("K = ",(K)," J/K")
print'%s %.2e %s'%("e = ",(e),"C")
print'%s %.2f %s'%("T = ",(T),"degree_K")
print'%s %.2f %s'%("VT = K*T/e = ",(K*T/e),"V") ##volt-equivalent temperature
K =  1.38e-23  J/K
e =  1.60e-19 C
T =  300.00 degree_K
VT = K*T/e =  0.03 V