Chapter - 5 : Transistor Circuits

Example 5.1 : Page No 309

In [3]:
from __future__ import division
from numpy import pi
# Given data
R1 = 600 # in ohm
R2 = 1000 # in ohm
R_TH = (R1*R2)/(R1+R2) # in ohm
X_C = 37.5 # in ohm
f = 1 # in kHz
f= f*10**3 # in Hz
C = 1/(2*pi * f*X_C) # in F
print "Value of C = %0.1f µF" %(C*10**6)
Value of C = 4.2 µF

Example 5.2 : Page No 323

In [4]:
# Given data
R_C= 3.6*10**3 # in ohm
R_L= 10*10**3 # in ohm
r_c = (R_C*R_L)/(R_C+R_L) # in ohm
V_CC = 10 # in V
V_BE = 0.7 # in V
R_E = 1 # in kohm
R_E = R_E * 10**3 # in ohm
R1 = 10 # in kohm
R1= R1*10**3 # in ohm
R2 = 2.2 # in  kohm
R2= R2*10**3 # in ohm
V_B = (V_CC*R2)/(R1+R2) # in V
I_E = (V_B-V_BE)/R_E # in A
V = 25*10**-3 # in V   # only value is given in the book 
r_e = V/I_E # in ohm
A_V = round(r_c/r_e) 
print "The voltage gain = %0.f" %A_V
V_in = 2 #in mV
V_out = A_V*V_in # in mV
print "The output voltage = %0.f mV" %V_out
The voltage gain = 117
The output voltage = 234 mV

Example 5.3 : Page No 324

In [5]:
# Given data
A_V = 117 
r_e = 22.7 # in ohm
bita = 300 
Zin_base = bita*r_e # in ohm
R1 = 2.2*10**3 # in  ohm
R2 = 10*10**3 # in ohm
Zin_stage = (Zin_base*R1*R2)/(Zin_base*R1+R1*R2+R2*Zin_base) # in ohm 
R = 600 # in ohm
V = 2 # in mV
V_in = (Zin_stage/(R+Zin_stage))*V # in mV
V_out = A_V * V_in # in mV
print "The output voltage = %0.f mV" %round(V_out)
The output voltage = 165 mV

Example 5.4 : Page No 328

In [16]:
# Given data
R1 = 4.3 # in K ohm
R1= R1*10**3 # in ohm
R2 = 10 # in K ohm
R2= R2*10**3 # in ohm
r_e = (R1*R2)/(R1+R2) # in ohm
bita = 200 
V=25 # in mV
I= 1 # in mA
r_e_desh= V/I # in ohm
Zin_base = bita*(r_e + r_e_desh) # in ohm
print "The input impedence of the base = %0.f kΩ" %(Zin_base*10**-3)
R3 = 10*10**3 # in ohm
Zin_stage = (R2*R3*Zin_base)/(R2*Zin_base+R3*Zin_base+R2*R3) # in ohm
print "The input impedance of the stage = %0.2f kΩ" %(Zin_stage*10**-3)
print "Because the input impedence of base is much larger than the input impedence of the stage,"
print "usually approximate the input impedence of the stage as the parallel of the biasing resistor only %0.f kΩ" %(Zin_stage*10**-3)
Zin_stage= R2*R3/(R2+R3) # in ohm
The input impedence of the base = 606 kΩ
The input impedance of the stage = 4.96 kΩ
Because the input impedence of base is much larger than the input impedence of the stage,
usually approximate the input impedence of the stage as the parallel of the biasing resistor only 5 kΩ

Example 5.5 : Page No 332

In [17]:
# Given data
V_CE = 0.2 # in V
V_BE= 0.7 # in V
R = 1 # in kohm
R = R * 10**3 # in ohm
V = 10 # in V
I_C = (V-V_CE)/R # in A
beta_min = 50 
I_B = I_C/beta_min # in A
I_B1 = V*I_B # in A
V1 = 5 # in V
R_B = (V1-V_BE)/I_B1 # in ohm
print "The base resistance = %0.1f kΩ" %(R_B*10**-3)
The base resistance = 2.2 kΩ

Example 5.6 : Page No 333

In [18]:
# Given data
R = 10 # in K ohm
R = R * 10**3 # in ohm
X_C = 0.1 * R 
C = 47 # in µF
C = C * 10**-6 # in F
f = 1/(2*pi * X_C *C)  # in Hz
print "Lowest frequency = %0.2f Hz" %f
Lowest frequency = 3.39 Hz

Example 5.7 : Page No 333

In [19]:
# Given data
C = 220 # in µF
C = C * 10**-6 # in F
R1 = 10 # in kohm
R1 = R1 * 10**3 # in ohm
R2 = 2.2 # in kohm
R2 = R2 * 10**3 # in ohm
R_TH = (R1*R2)/(R1+R2) # in ohm
X_C = 0.1*R_TH # in ohm
f = 1/(2*pi*C*X_C) # in Hz
print "The lowest frequency = %0.2f Hz" %f
The lowest frequency = 4.01 Hz

Example 5.8 : Page No 334

In [20]:
# Given data
i_c = 15 # in mA
i_c = i_c * 10**-3 # in A
i_b = 100 # in µA
i_b = i_b * 10**-6 # in A
bita = i_c/i_b 
print "The value of ac bita = %0.f" %bita
The value of ac bita = 150

Example 5.9 : Page No 334

In [21]:
# Given data
R_C = 3.6 # in kohm
R_C= R_C*10**3 # in ohm
R_L = 10 # in kohm
R_L=R_L*10**3 # in ohm
R_TH = (R_C*R_L)/(R_C+R_L) # in ohm
V_CC = 10 # in V
R2 = 2.2 # in kohm
R2 = R2 * 10**3 # in ohm
R1 = 10 # in kohm
R1 = R1 * 10**3 # in ohm
V_BE = 0.7 # in V
V_B = (V_CC*R2)/(R1+R2) # in V
R_E = 1 # in kohm  
R_E = R_E *10**3 # in ohm
I_E = (V_B-V_BE)/R_E # in A
V1 = 25 # in mV
V1 = V1*10**-3 # in V
r_e = V1/(I_E) # in ohm
A_v = (R_TH)/r_e 
V_in = 2 # in mV
V_in = V_in * 10**-3 # in V
V_out = A_v*V_in # in V
print "The output voltage = %0.2f V" %V_out
The output voltage = 0.23 V

Example 5.10 : Page No 336

In [22]:
# Given data
R_L = 10 # in kohm
R_L= R_L*10**3 # in ohm
R_C = 3.6 # in kohm
R_C= R_C*10**3 # in ohm
r_e_desh = 22.73 # in ohm 
R_L_desh = R_L/2 # in ohm
A_v = ( (R_C*R_L_desh)/(R_C+R_L_desh))/r_e_desh 
print "The voltage gain = %0.2f" %A_v
The voltage gain = 92.08

Example 5.11 : Page No 336

In [23]:
# Given data
R_E = 1 # in kohm
R_E = R_E * 10**3 # in ohm
R_L = 3.3 # in kohm
R_L = R_L * 10**3 # in ohm
r_e = (R_E*R_L)/(R_E+R_L) # in ohm
V_CC = 15 # in V
R2 = 2.2 # in K ohm
R2 = R2 * 10**3 # in ohm
R1 = R2 # in ohm
V_B = (V_CC*R2)/(R1+R2) # in V
V_BE = 0.7 # in V
R_E = 1 # in K ohm
R_E = R_E * 10**3 # in ohm
I_E = (V_B-V_BE)/R_E # in A
V1 = 25*10**-3 # in V
r_e1 = V1/I_E 
bita = 200 
Zin_base = bita*(r_e+r_e1) # in ohm
print "The input impedence of the base = %0.2f kΩ" %(Zin_base*10**-3)
Zin_stage = (R1*R2*Zin_base)/(R1*R2+R2*Zin_base+R1*Zin_base) # in ohm
print "The input impedance of the stage = %0.2f kΩ" %(Zin_stage*10**-3)
The input impedence of the base = 154.22 kΩ
The input impedance of the stage = 1.09 kΩ

Example 5.12 : Page No 337

In [24]:
# Given data
r_e = 767.44 
r_e1 = 3.68 
V_in = 1 # in V
A_v = round(r_e/(r_e+r_e1)) 
print "The voltage gain = %0.f" %A_v
V_o = A_v*V_in # in V
print "The load voltage = %0.f V" %V_o
The voltage gain = 1
The load voltage = 1 V