from __future__ import division
# Given data
scale= 5 # in mV/cm
gh= 5.2 #amplitude of the graph in cm
PtoPamplitude= gh*scale # in mV
print "Peak-to-peak amplitude = %0.f mV" %PtoPamplitude
# Given data
scale= 100 # in mV/cm
gh= 5.2 #amplitude of the graph in cm
PtoPamplitude= gh*scale # in mV
print "Peak-to-peak amplitude = %0.2f V" %(PtoPamplitude*10**-3)
# Given data
scale= 20 # in µS/cm
gh= 3.2 #amplitude of the graph in cm
T= gh*scale # in mV
print "The period of the waveform = %0.f µS" %T
# Given data
scale= 50 # in µS/cm
gh= 2 #amplitude of the graph in cm
T_PD= gh*scale # in mV
print "The pulse delay for the waveform = %0.f µs" %T_PD
from __future__ import division
# Given data
scale= 2 # in µS/cm
gh= 4.6 #amplitude of the graph in cm
T_PQ= gh*scale # in mV
print "The pulse width of the waveform = %0.1f µs" %T_PQ