# variables
T = 80.; #temperature of chlorine gas in degree F
p = 100.; #pressure in psia
W = 2*35.45; #molecular weight of chlorine
# calculations
R = 1545/W; #specific gas constant in ft-lb/lb-degreeR
gam = p*(144/R)*(1/(460+T)); #specific weight of chlorine in lb/cuft
Spec_vol = 1/gam; #specific volume in cuft/lb
rho = gam/32.2; #density of chlorine in slug/cuft
# results
print 'Specific weight = %.3f lb/cuft \nSpecific volume = %.3f cuft/lb \ndensity = %.4f slug/cuft'%(gam,Spec_vol,rho);
import math
# variables
gamma = 1.4;
T1 = 60.; #temperature of air in degree F
p1 = 14.7; #pressure in psia
k = 0.5; #(final volume/initial volume) = k
R = 53.3; #Engineering gas constant
# calculations
gam1 = p1*(144/R)*(1/(460+T1)); #lb/cuft
gam2 = gam1/k; #lb/cuft
p2 = (p1/(gam1**(gamma)))*(gam2**(gamma)); # in psia
T2 = p2*(144/R)*(1/gam2); #in degree F
a1 = math.sqrt(gamma*32.2*R*(460+T1)); # in fps
a2 = math.sqrt(gamma*32.2*R*(T2)); # in fps
# results
print 'Final pressure = %.1f psia \
\nFinal temperature = %d degreeR \
\nSonic velocity before compression = %d fps \
\nSonic velocity after compression = %.f fps'%(p2,T2,a1,a2);
#the answers differ due to rounding-off errors
import math
from scipy.integrate import quad
# variables
r1 = 0.25; # radius of cylinder in feet
l = 2.; #length of cylnider in feet
r2 = 0.30; # radius of co-axial cylinder in feet
mu = 0.018; #lb-sec/ft**2
torque = 0.25; # in ft-lb
dv_dy1 = torque/(4*math.pi*mu*r1**2); #velocity gradient at radius = 0.25 in fps/ft
dv_dy2 = torque/(4*math.pi*mu*r2**2); #velocity gradient at radius = 0.30 in fps/ft
# calculations
def f4(r):
return -torque/(4*math.pi*mu*r**2)
V1 = quad(f4,r2,r1)[0]
rpm1 = V1*60/(2*math.pi*r1);
V2 = torque*(r2-r1)/(4*math.pi*mu*r1**2); #in fps
rpm2 = V2*60/(2*math.pi*r1);
hp = 2*math.pi*r1*(rpm1/(550*60));
# results
print 'Velocity gradient at the inner cylinder wall is %.1f fps/ft and at the outer cylinder wall is %.1f fps/ft'%(dv_dy1,dv_dy2);
print 'rpm = %.1f and approximate rpm = %.1f, hp = %.5f '%(rpm1,rpm2,hp);
# variables
T = 70. #degreeF
del_p = 0.1; # in psi
sigma = 0.00498; # lb/ft
# calculations
R = (sigma*2)/(del_p*144); #in ft
d = 12*2*R; # in inches
# results
print 'Diameter of the droplet of water = %.4f in'%(d);
import math
# variables
l = 12.; # length of the cylinder
T = 150.; #temperature of water in degreeF
p1 = 14.52; #atmospheric pressure in psia
p2 = 3.72; #the pressure on the inside of the piston in psia
# calculations
F = 0.25*(p1-p2)*math.pi*l**2; #Force on the piston in lb
# results
print 'Minimum force on the piston to be applied is, F = %d lb'%(F);
#incorrect answer given in textbook