import math
# variables
C_I = 0.98; #coefficient of pitot tube
d = 3.; #in
# calculations
del_p = (d/12)*(13.55-0.88)/0.88;
v_c = C_I*math.sqrt(2*32.2*del_p);
# results
print 'The velocity at the centerline of the pipe = %.1f fps'%(v_c);
import math
# variables
P = 25.; #in. of mercury
p = 18.; #in. of mercury
T = 150.; #degreeF
# calculations
k = P/p;
if k < (1.893) :
V = math.sqrt(2*32.2*186.5*(T+460)*(1-(1/k)**0.286));
print 'The local velocity just upstream from the pitot static tube = %d fps'%(V);
import math
# variables
P = 20.; #in. of mercury
p = 5.; #in. of mercury
T = 150.; #degreeF
# calculations
k = P/p;
if k >1.893:
M_0 = 1.645;
V_0 = math.sqrt(2*32.2*186.5*(T+460)/(1+ (2*186.5)/(53.3*1.4*M_0**2)));
print 'The speed of this airplane = %d fps'%(round(V_0,-1));
import math
# variables
b = 6.; #in
d = 3.; #in
p = 20.; #psi
del_p = 6.; #in. of mercury
p_bar = 14.70; #psia
T = 60.; #degreeF
# calculations
k = (p + p_bar - b*(p_bar/29.92))/(p+p_bar);
gam1 = (p+p_bar)*144/53.3 /(T+460);
A2 = 0.0491; #sqft
Y = 0.949;
Cv = 0.98;
G = Y*Cv*A2*gam1*math.sqrt(2*32.2*b*10*A2*144/gam1) /(math.sqrt(1-0.25**2));
Cv_true = 0.981;
G_true = G*Cv_true/Cv;
# results
print 'G = %.2f lb/sec'%(G);
import math
# variables
d = 3.; #in
l = 6.; #in
h = 6.; #in
T = 60.; #degreeF
# calculations
Cv= 0.99;
A1 = 0.25*math.pi*(d/12)**2;
Q = Cv*A1*math.sqrt(2*32.2*(h/12)*(13.55-1)) /(math.sqrt(1-0.25**2));
Cv_true = 0.988;
Q_true = Q*Cv_true/Cv;
h_L = 3.8;
# results
print 'Q = %.3f cfs'%(Q);
print 'True Q = %.3f cfs'%(Q_true);
print 'Total head loss is about %.1f ft of water'%(h_L);
#there are small errors in the answer given in textbook