# Variable Declaration
v=6.; #velocity in m/s
l=6.; #length in m
pa1=10.; #pressure at 1 in atm
pa2=0; #pressure at 2 in atm
t=373.; # temperature in kelvin
p=1.; #pressure of naphthalene in atm at 373kelvin
D=5.15*10**-6; #diffusivity of naphthalene in C02 in m**2/s
d=0.946; #density of air in kg/m**3
u=.021*10**-3; #viscosity of air in Newton*s/m**2
ID=0.075; #diameter in m
# Calculation
nre=(ID*v*d)/(u); #calc. of reynolds no.
cf=2*0.023*(nre)**(-0.2); #friction factor
nsc=(u)/(d*D); #calc of schmidt no.
kc=(cf*v)/(2*(nsc)**(2./3));
na=(kc*10**5*(pa1/760-0))/(8314*t); #difussion flux in kmol/m**2*s
sub=na*2*3.14*(ID/2)*l; #rate of sublimation
# Result
print "\nrate of sublimation :%f *10**-6 kmol/s\n"%(sub/10**-6);
#End
# Variable Declaration
v=0.30; #velocity of parallelair in m/s
t=300; #temperature of air in kelvin
p=10.0**5/760; #pressure of air in pascal
Dab=5.9*10**-4; #diffusivity of naphthalene in in air in m**2/s
pa1=0.2*10**5/760; #pressure of air at 1 in pascal
pa2=0; #pressure of air at 2 in pascal
d=1.15; #density of air in kg/m**3
u=0.0185*10**-3; #viscosity of air in Newton*s/m**2
D=1.; #length in m
a=1.; #area of plate in m**2
# Calculation
Nsc=u/(d*Dab); #schmidt no. calculation
Nre=(D*v*d)/u; #reynolds no. calculation
#flow is turbulent
f=0.072*(Nre)**-.25; #friction factor using "chilton colburn" analogy
k_c=(f*v)/(2*(Nsc)**.667); #mass transfer coefficient
NA=k_c*(pa1-pa2)/(8314*300); #mass flux calc.
sub=NA*a; #rate of sublimation in kmol/m**2*s
# Result
print "\nrate of sublimation :%f *10**-7 kmol/s\n"%(sub/10**-7)
#End
# a is CO2 and b is water
p=2.; #total pressure at 1 in atm
pa1=0.2*10**5; #pressure of CO2 at pt 1 in atm
pa2=0; #pressure of CO2 at pt 2 is 0 since air is pure
ya1=0.1; #mole fraction of CO2 at 1 is 0.2/2
ya2=0; #mole fraction of CO2 at 2 is 0 since air is pure
yb1=0.9; #mole fraction of water at 1 is (1-0.1)
yb2=1.0; #mole fraction of water at 2 is 1.0 since total pressure has to be constant.
k_y1=6.78*10**-5; #mass transfer coefficient in kmol/m**2*s*molefraction
import math
# Calculation
yb_ln=(yb2-yb1)/(math.log(yb2/yb1)); #log mean is represented by yb_ln
k_y=k_y1/yb_ln;
# Result
print "\nvalue of mass transfer coefficient k_y is:%f *10**-5 kmol/m**2*s*(molefractin)"%(k_y/10.0**-5)
k_g=k_y/p; #mass ttransfer coefficient in lmol/m**2*s*atm
print "\nvalue mass transfer coefficient k_g is:%f *10**-5 kmol/m**2*s*(atm)"%(k_g/10**-5)
NA=k_y*(ya1-ya2); #mass flux in kmol/m**2*s
print "\nvalue of rate of mass transfer :%f *10**-6 kmol/m**2*s"%(NA/10.0**-6)
#end
NA=7.5*10**-7; #mass flux in gmol/cm**2*s
Dab=1.7*10**-5; #diffusivity if SO2 in water in cm**2/s
c=1./18.02; #concentration is density/molecular weight in gmol/cm**2*s
#SO2 is absorbed from air into water
xa1=0.0025; #liquid phase mole fraction at 1
xa2=0.0003; #liquid phase mole fraction at 2
#NA=kc(Ca1-Ca2)=Dab*(Ca1-Ca2)/d
# Calculation
k_c=NA/(c*(xa1-xa2)); #k_c=Dab/d=NA/c(xa1-xa2)
# Result
print "\nmass transfer coefficient k_c is:%f cm/s"%k_c
d=Dab/k_c;
print "\nfilm thickness d is :%f cm"%d
#end
Kg=2.72*10**-4; #overall gas phase mass transfer coefficient in kmol/m**2*S*atm
r_gas=0.85*(1/Kg); #given that gas phase resisitance is 0.85 times overall resistance
kg=1.0/r_gas;
m=9.35*10**-3; #henry's law constant in atm*m**3/kmol
kl=m/(1./Kg-1/kg); #liquid phase mass transfer coefficient in m/s
print "\nthe value of liquid film coefficient kl : %f*10**-5 m/s"%(kl/10**-5)
print "\nthe value of gas film coefficient kg : %f*10**-5 m/s"%(kg/10**-5);
p=1.; #overall pressure in atm
#NA=Kg(pag-pa*)=kg(pag-pai)=kl(Cai-Cal)
# Calculation
Yag=0.1; #molefraction of ammonia
Cal=6.42*10**-2; #liquid phase concentration
Pag=Yag*p; #pressure of ammonia
#Pai=m*C_ai;
#NA=kg(pag-pai)=kl(Cai-Cal)
#Cai=poly([0],'Cai'); #calc. of conc. in gas phase
x = 1.6588481 #x=roots((Pag-m*Cai)*(kg/kl)-(Cai-Cal));
# Result
print "\nthe value of interphase conc.cai :%f kmol/m**3"%x
Pai=m*x;
print "\nthe value of interphase pressure pai is:%f atm"%Pai
#end
m=0.3672;
t=.9;
#Pai and Cai indicates interfacial pressure and conc.
#Pal and Cal indicates bulk pressure and conc.
Yag=0.15; #molefraction of ammonia
Cal=0.147; #liquid phase concentration in kmol/m**3
p=1; #overall pressure
# Calculation
Pag=Yag*p; #pressure of ammonia
#Pai=m*C_ai;
#kg/kl=(Cai-Cal)/(Pag-Pai);
#Cai=poly([0],'Cai'); #calc. of conc. in gas phase
x = 0.211954 #x=roots((Pag-m*Cai)*(t)-(Cai-Cal));
# Result
print "\nthe value of conc. of ammonia cai is :%f kmol/m**3"%x
Pai=m*x;
print "\nthe value of interphase pressure Pai is :%f atm"%Pai
# Variable Declaration
D=.1;
l=3; # l is length of bubble in cm
a=3.14*D*l; # area in cm**2
Ca_o=0.0001; #pure conc. of gas in g*mol/cc*atm
Ca=0;
NA=.482*10**-5; # molar rate of absorption in g*moles/s
#Pa_o and Ca_o indicates pure pressure and conc.
# Calculation
kl=NA/(a*(Ca_o-Ca)); #mass transfer coefficient acc. to higbie's penetration theory
Q=4; #volumetric flow rate in cc/s
A=3.14*.1*.1/4; #area of flow
v=Q/A; #velocity of flow in cm/s
#timt t=bubble length/linear velocity;
t=l/v;
DAB=(kl**2)*3.14*t/4; #diffusivity in cm**2/s
D_new=0.09; #revised diameter reduced to.09
a_new=3.14*l*D_new; #revised area
A_new=3.14*0.09*0.09/4; #revised flow area
v_new=Q/A_new; #revised velocity
# Result
print "\nthe value of diffusivity of gas DAB is :%f cm/s"%(DAB/10**-5)
t_new=l/v_new; #revised time
kl_new=2*(DAB/(3.14*0.0047))**0.5; #revised mass transfer coefficient
NA_new=kl_new*a_new*(Ca_o-Ca); #revised molar rate absorption in g*moles/s
print "\nthe value of NA_new is :%f*10**-6 kmol/m**3"%(NA_new/10**-6)
#end
# Variable Declaration
Kg=7.36*10**-10;
p=1.013*10**5;
Ky=Kg*p;
#resistance in gas phase is 0.45 of total resistance & .55 in liquid phase
#(resistance in gas phase)r_gas=1/ky and (resistance in liq phase)r_liq=m'/kx
r_gas=0.45*(1./Ky);
ky=1./r_gas;
r_liq=0.55*(1./Ky);
print "film based liq phase mass transfer coeff.ky is :%f "%ky
# Calculation
m1=86.45;
kx=m1/r_liq;
yag=.1;
xal=(.4/64)/((99.6/18)+(.4/64));
print "\n film based gas phase mass transfer coeff.ky is :%f "%kx
#slope of the line gives -kx/ky=-70.61
m2=m1; # since equilibrium line a straigth line m'=m''
Kx=1/(1/kx+(1/(m2*ky))); #overall liquid phase mass transfer coefficient
print "\n overall liq phase mass transfer coefficient Kx is :%f "%Kx
# equillibrium relation is given under
p = [0.2,0.3,0.5,0.7];
a = [29,46,83,119];
i=0;
x = [0,0,0,0]
y = [0,0,0,0]
#looping for calcullating mole fraction
while (i<4):
x[i]= (p[i]/64.)/(p[i]/64.+100/18);
y[i]= a[i]/760.; #mole fraction plotted on y-axis
i=i+1;
#mole fraction plotted on x-axis
%matplotlib inline
from matplotlib.pyplot import *
# Result
plot(x,y);
title("Fig.3.17,Example 8");
xlabel("X-- Concentration of SO2 in liquid phase, X(10**4)(molefraction)");
ylabel("Y-- Concentration of SO2 in gas phase, Y(molefraction)");
show()
#from the graph we get these values
yao=.083; #corresponding to the value of xao=0.001128
xao=.00132; #corresponding to the value of yag=.1
yai=.0925; #corresponding to the perpendicular dropped from the pt(.001128,0.1)
xai=.00123;
# flux based on overall coefficient
NAo_gas=Ky*(yag-yao);
NAo_liq=Kx*(xao-xal);
print "overall gas phase mass transfer flux -NAo_gas is :%f*10**-6 kmol/m**2*s "%(NAo_gas/10**-6)
print "overall liq phase mass transfer flux -NAo_liq is :%f*10**-6 kmol/m**2*s "%(NAo_liq/10**-6);
# flux based on film coefficient
NAf_gas=ky*(yag-yai);
NAf_liq=kx*(xai-xal);
print "film based gas phase mass transfer flux-NAf_gas is :%f *10**-6 kmol/m**2*s"%(NAf_gas/10**-6);
print "film based liq phase mass transfer flux-NAf_liq is :%f *10**-6 kmol/m**2*s"%(NAf_liq/10**-6);
#end
# Variable Declaration
Cas=1.521*10**-7;
v=1525; #velocity in m/s
D=0.0516; #diffusivity in cm**2/s
d=1.25*10**-3; #density of air in g/cm**3
u=1.786*10**-4; #viscosity of air in n*s/m**2
Dia=2.54; #diameter in cm
# Calculation
nre=(Dia*v*d)/(u); #calc. of reynolds no.
cf=2*0.036*(nre)**(-0.25); #friction factor
nsc=(u)/(d*D); #calc of schmidt no.
kc=(cf*v)/(2*(nsc)**(2./3)); #cf/2=kc/uo*(sc)**2/3
#rate of mass transfer=(cross sectional area)*(air velocity)*dc =(3.14*d**2/4)*v*dc -----1 eqn
#flux for mass transfer from the surface=kc*(Cas-C)
# rate of mass transfer=(flux)*mass transfer
# =kc*(Cas-C)*3.14*dx*D------2 eqn
# solving ----1 & -----2 we get
#
# (3.14*d**2/4)*v*dc=kc*(Cas-C)*3.14*dx*d;
# dc/(Cas-C)=(kc*3.14*d*v)/(3.14*d**2/4)*dx
# solving this we get
# ln[(Cas-C)/(Cas-C_in)]=(kc*4*x)/(d*v)
import math
x=183; #upper limit of x
C_in=0; #C=C_in=0;
t=(kc*4*x)/(Dia*v); #variable to take out the exponential
z=math.e**t;
C_final=Cas-(z*(Cas-C_in)); #value of c_final in g*mol/cc;
# Result
print "\t conc. of acid at outlet :%f *10**-8 g*mol/cc\n"%(abs(C_final/10**-8))
rate=(3.14*Dia**2/4)*v*(C_final-C_in);
print "\trate of mass transfer :%f *10**-4 g*mol/s\n"%(abs(rate/10**-4));
#End