# Variable Declaration
#dry bulb temperature=50 and wet bulb temperature=35
Tg=50.; #dry bulb temperature=50
To=0; #refrence temperature in degree celcius
Mb=28.84; #average molecular weight of air
Ma=18.; #average molecular weight of water
#part(i)
ybar=.0483 #0.003 kg of water vapour/kg of dry air
print "\n the humidity(from chart) is \t\t:%f percent"%ybar
#part(ii)
humper=35.; #humidity percentage
print "\n the percentage humidity is(from chart) :%f percent"%humper
# Calculation and Result
#part(iii)
pt=1.013*10**5; #total pressure in pascal
molhum=0.0483; #molal humidity =pa/(pt-pa)
pa=molhum*pt/(1+molhum);
#the vopour pressure of water(steam tables)at 50degree = .1234*10**5 N/m**2
relhum=(pa/(.1234*10**5))*100; #percentage relative humidity =partial pressure/vapour pressure
print "\n the percentage relative humidity is \t percent:%f "%relhum
#part(iv)
dewpoint=31.5; #dew point temperature in degree celcius
print "\n the dew point temperature \t\t :%f degree celcius"%dewpoint
#part(v)
Ca=1.005;
Cb=1.884;
ybar=.03; #saturation temperature inkg water vapour/kg dry air
Cs=Ca+Cb*ybar; #humid heat in kj/kg dry air degree celcius
print "\n we get humid heat as \t\t\t :%f kj/kg dry air degree celcius "%Cs
#part(vi)
d=2502; #latent heat in kj/kg
H=Cs*(Tg-0)+ybar*d; #enthalpy for refrence temperature of 0 degree
print "\n we get H as \t\t\t\t :%f kj/kg"%H
Hsat=274.; #enthalpy of sturated air
Hdry=50.; #enthalpy of dry air in kj/kg
Hwet=Hdry+(Hsat-Hdry)*0.35; #enthalpy of wet air in kj/kg
print "\n we get enthalpy of wet air as \t:%f kj/kg"%Hwet
#part(vii)
VH=8315*((1./Mb)+(ybar/Ma))*((Tg+273.)/pt); #humid volume in m**3mixture/kg of dry air
print "\n we get VH as (a)\t\t\t :%f m**3/kg of dry air"%VH
spvol=1.055; #specific volume of saturated air in m**3*kg
vdry=0.91; #specific volume of dry air in m**3/kg
Vh=vdry+(spvol-vdry)*.35 #by interpolation we get Vh in m**3/kg of dry air
print "\n by interpolation we get specific volume Vh as(b) :%f m**3/kg of dry air"%Vh
#end
# Variable Declaration
#dry bulb temperature=25 and wet bulb temperature=22
Tg=25.; #dry bulb temperature=50
To=0; #refrence temperature in degree celcius
Mb=28.84; #average molecular weight of air
Ma=18.; #average molecular weight of water
# Calculation and Result
#part(i)
hum=.0145 #0.0145 kg of water/kg of dry air
print "\n the saturation humidity(from chart) is :%f percent"%hum
#part(ii)
humper=57.; #humidity percentage
print "\n the percentage humidity is \t\t:%f percent"%humper
#part(iii)
pt=1.; #total pressure in atm
sathum=0.0255; #molal humidity =pa/(pt-pa)
pa1=sathum*pt*(28.84/18)/(1+(sathum*(28.84/18)));
#the vopour pressure of water(steam tables)at 25 = .0393*10**5 N/m**2
pt=1; #total pressure in atm
molhum=0.0145; #molal humidity =pa/(pt-pa)
pa2=molhum*pt*(28.84/18)/(1+(molhum*pt*(28.84/18)));
#the vopour pressure of water(steam tables)at 25 = .0393*10**5 N/m**2
relhum=(pa2/pa1)*100; #percentage relative humidity =partial pressure/vapour pressure
print "\n the percentage relative humidity is \t :%f "%relhum
#part(iv)
dewpoint=19.5; #dew point temperature in degree celcius
print "\n the dew point temperature \t :%f degree celcius"%dewpoint
#part(v)
Ca=1005.;
Cb=1884.;
ybar=.0145; # humidity inkg water /kg dry air
Cs=Ca+Cb*ybar; #humid heat in j/kg dry air degree celcius
d=2502300.; #latent heat in j/kg
H=Cs*(Tg-0)+ybar*d; #enthalpy for refrence temperature of 0 degree
print "\n we get Humid heat H as \t :%f j/kg"%H
#the actual answer is 62091.3 bt in book it is given 65188.25(calculation mistake in book)
#end
# Variable Declaration
#part(i)
pt=800.; #total pressure in mmHg
pa=190.; #vapour pressure of acetone at 25 degree
ys_bar=pa*(58./28)/(pt-pa) #
#percentage saturation = y_bar/ys_bar *100
s=80; #percent saturation
# Calculation and Result
y_bar=ys_bar*s/100.; #absolute humidity
print "\n the absolute humidity is \t :%f kg acetone/kmol N2 "%y_bar
#part(ii)
#y_bar=pa*(58/28)/(pt-pa)
pa1=pt*y_bar*(28./58)/(1+(y_bar*(28./58)));
print "\n the partial pressure of acetone is:%f mmHg"%pa1
#part(iii)
y=pa1/(pt-pa1); #absolute molal humidity
print "\n absolute molal humidity \t:%f kmol acetone/kmol N2"%y
#part(iv)
#volume of .249kmol acetone vapour at NTP =.249*22.14
#p1v1/T1 =p2v2/T2
p2=800.; #final pressure of acetone and nitrogen at 25 degree
p1=760.; #initial pressure of acetone and nitrogen at 25 degree
T2=298.; #final temperature of acetone and nitrogenat 25 degree
T1=273.; #initial temperature of acetone and nitrogen at 25 degree
vA1=5.581; #initial volume of acetone at 25 degree
vN1=22.414; #initial volume of nitrogen at 25 degree
vA2=T2*vA1*p1/(T1*p2); #final volume of acetone at 25 degree
vN2=T2*vN1*p1/(T1*p2); #final volume of nitrogen at 25 degree
vtotal=vA2+vN2; #total volume of the mixture
vper=vA2*100/vtotal; #percentage volume of acetone
print "\n the percentage volume of acetone is :%f m**3"%vper
#end
# Variable Declaration
#part(i)
pa=13.3; #pressure in kpa
pa2=20.6; #vapour pressure at 60 degree
pt=106.6 #total pressure in kpa
y=pa/(pt-pa); #absolute molal humidity
# Calculation and Result
y_bar=y*(18/28.84); #relative humidity
print "\n absolute humidity of mixture :%f kg water-vapour/kg dry air"%y_bar
#part(ii)
mf=pa/pt; #mole fraction
print "\n the mole fraction is :%f"%mf
#part(iii)
vf=mf; #volume fraction
print "\n the volume fraction is :%f"%vf
#part(iv)
Ma=18.; #molecular weight
Mb=28.84; #molecular weight
Tg=60.; #temperature of mixture
rh=(pa/pa2)*100.; #relative humidity in pecentage
print "\n we get relative humidity as as :%f percent"%rh
#part(v)
VH=8315.*((1./Mb)+(y_bar/Ma))*((Tg+273)/pt)*10**-3; #humid volume in m**3mixture/kg of dry air
x=y_bar/VH; #g water/m**3 mixture
print "\n we get x i.e. gwater/m**3 mixture as :%f "%(x*1000)
#end
# Variable Declaration
#part(i)
y_bar=.0183; #kg water vapour/kg dry air
print "\n we get humidity as(from chart) :%f kg of water/kg dry air"%y_bar
print "\n we get saturation humidity as(from chart) :%d percent"%67
Ma=18.; #molecular weight
Mb=28.84; #molecular weight
Tg=30.;
pa = 13.3
pa2 = 20.6 #temperature of mixture
rh=(pa/pa2)*100; #relative humidity in pecentage
pt=1.013*10**5; #total pressure in pascal
# Calculation and Result
VH=8315*((1./Mb)+(y_bar/Ma))*((Tg+273)/pt); #humid volume in m**3mixture/kg of dry air
print "\n we get humid volume as \t:%f m**3/kg dry air"%VH
#part(ii)
Ca=1005.;
Cb=1884.;
Cs=Ca+Cb*y_bar; #humid heat in j/kg dry air degree celcius
print "\n we get humid heat as \t\t :%f j/kg dry air degree celcius "%Cs
#part(iii)
d=2502300.; #latent heat in j/kg
H=Cs*(Tg-0)+y_bar*d; #enthalpy for refrence temperature of 0 degree
print "\n we get Enthalpy H as \t\t:%f j/kg dry air"%H
#part(iv)
dewpoint=23.5; #dew point temperature in degree celcius
print "\n the dew point temperature \t :%f degree celcius"%dewpoint
#end
# Variable Declaration
#part(i)
y=.048; #humidity kmol water vapour/kmol dry air
y_bar=y*(18/28.84); #(from chart) absolute humidity
print "we get absolute humidity as :%f kg of water/kg dry air"%(y_bar)
print "we get percentage humidity as(from chart) :%f percent"%(25.5);
# Calculation and Result
y_bar=y*(18/28.84); #relative humidity
Ma=18.; #molecular weight
Mb=28.84; #molecular weight
Tg=55.; #temperature of mixture
pt=1.013*10**5; #total pressure in pascal
VH=8315*((1./Mb)+(y_bar/Ma))*((Tg+273)/pt); #humid volume in m**3mixture/kg of dry air
print "\n we get VH as \t :%f m**3/kg dry air"%VH
#part(ii)
Ca=1005.;
Cb=1884.;
Cs=Ca+Cb*y_bar; #humid heat in j/kg dry air degree celcius
print "\n we get humid heat as \t :%f j/kg dry air degree celcius "%Cs
#part(iii)
d=2502300.; #latent heat in j/kg
H=Cs*(Tg-0)+y_bar*d; #enthalpy for refrence temperature of 0 degree
print "\n we get H as \t :%f j/kg dry air"%H
#end
# Variable Declaration
ft=46; #final temperature in degree celcius
# Calculation and Result
print "\n final temperature is (from chart):%f degree celcius"%ft
y_bar=.0475; # humidity of air
print "\n the humidity of air(from chart) :%f kg water vapour /kg dry air"%y_bar
#end
# Variable Declaration
pa1=4.24 #data:vapour pressure of water at 30degree = 4.24 kpa
pa2=1.70 #vapour pressure of water at 30degree = 1.70 kpa
#part(i)
pt=100.; #total pressure
# Calculation
ys_bar=pa1/(pt-pa1); #kg water vapour/kg dry air
rh=.8; #relative humidity
pa3=rh*pa1; #partial pressure
y_bar=pa3*(18/28.84)/(pt-pa3); #molal humidity
print "\n the molal humidity:%f kg/kg dry air"%y_bar
#part(ii)
pa=1.7;
pt=200.;
ys=pa/(pt-pa);
ys_bar=ys*(18/28.84);
# Result
print "\n the molal humidity if pressure doubled and temp. is 15 :%f kg/kg dry air"%ys_bar
#part(iii)
Ma=18.; #molecular weight
Mb=28.84; #molecular weight
Tg=30.; #temperature of mixture
rh=(pa/pa2)*100; #relative humidity in pecentage
pt=10**5; #total pressure in pascal
VH=8315*((1./Mb)+(y_bar/Ma))*((Tg+273)/pt); #humid volume in m**3mixture/kg of dry air
print "\n we get humid volume VH as \t :%f m**3/kg of dry air"%VH
w=100/VH; #100 m**3 of original air
wo= w*y_bar; #water present in original air
wf= w*ys_bar; #water present finally
wc=wo-wf; #water condensed from 100m**3 of original sample
print "\n the weight water condensed from 100m**3 of original sample:%f kg"%wc
#part(iv)
Tg=15.; #temperature of mixture
pt=2*10**5; #total pressure in pascal
VH=8315*((1./Mb)+(ys_bar/Ma))*((Tg+273)/pt); #humid volume in m**3mixture/kg of dry air
vf=VH*110.6; #final volume of mixture
print "\n we get VH final volume of mixture as \t :%f m**3"%vf
#end
# Variable Declaration
#part(i)
y_bar=.03; # humidity inkg water /kg dry air
pt=760.; #total pressure in pascal
pa2=118.; #final pressure
# Calculation and Result
y=y_bar/(18/28.84); #humidity kmol water vapour/kmol dry air
pa=(y*pt)/(y+1); #partial pressure
rh=pa/pa2; #relative humidity
sh=pa2/(pt-pa2); #saturated humidity
ph=(y/sh)*100; #percentage humidity
print "\n percentage humidity is :%f"%ph
#/part(ii)
Ma=18.; #molecular weight
Mb=28.84; #molecular weight
Tg=55.; #temperature of mixture
pt=1.013*10**5; #total pressure in pascal
VH=8315*((1./Mb)+(y_bar/Ma))*((Tg+273)/pt); #humid volume in m**3mixture/kg of dry air
print "\n we get VH humid volume as :%f m**3/kg dry air"%VH
#part(iii)
Ca=1005.;
Cb=1884.;
Cs=Ca+Cb*y_bar; #humid heat in j/kg dry air degree celcius
print "\n we get humid heat as \t :%f j/kg dry air degree celcius "%Cs
d=2502300; #latent heat in j/kg
H=Cs*(Tg-0)+y_bar*d; #enthalpy for refrence temperature of 0 degree
print "\n we get H enthalpy as \t :%f j/kg"%H
#part(iv)
v=100.; #volume of air
mass=v/VH; #mass of dry air
Tg=110.; #temperature of mixture
d=2502300.; #latent heat in j
H_final=Cs*(Tg-0)+y_bar*d; #enthalpy for refrence temperature of 0 degree
H_added=(H_final-H)*102.25; #HEAT added in kj
print "\n we get heat added as \t :%f kj"%(H_added/1000)
#end
# Variable Declaration
%matplotlib inline
L=2000.; #flow rate of water to be cooled in kg/min
T1=50.; #temperature of inlet water
T2=30.; #temp. of outlet water
H1=.016; #humidity of incoming air
cp=4.18; #specific heat of water
cpair=1.005; #specific heat capcity of air
cpwater=1.884; #specific heat capcity of water
tg=20.; #temperature in degree
to=0;
ybar=0.016; #saturated humidity at 20 degree
d=2502.; #latent heat
Ky_a=2500.; #value of masstransfer coefficient in kg/hr*m**3*dybar
# Calculation
E=cpair*(tg-to)+(cpwater*(tg-to)+d)*ybar; #enthalpy
#similarly for other temperatures
T=[20,30,40,50,55] #differnt temperature for different enthalpy calculation
i=0;
E= [0,0,0,0,0]
while(i<5): #looping for different enthalpy calculation of operating line
E[i]=cpair*(T[i]-to)+(cpwater*(T[i]-to)+d)*ybar;
print "\n the enhalpy at :%f is :%f"%(T[i],E[i]);
i=i+1;
ES=[60.735,101.79,166.49,278.72,354.92] #enthalpy of eqll condition
from matplotlib.pyplot import *
# Result
plot(T,E);
plot(T,ES);
title("Fig.5.10(b),Temperature-Enthalpy plot");
xlabel("X-- Temperature, degree celcius");
ylabel("Y-- Enthalpy ,kj/kg");
legend("operating line","Enthalpy at saturated cond")
show()
Hg1=71.09; #point on the oper. line(incoming air)
Hg2=253.; #point after drawing the tangent
slope=(Hg2-Hg1)/(T1-T2); #we gt slope of the tangent
#slope = (L*Cl/G)_min
Cl=4.18;
G_min=L*60*Cl/slope; #tangent gives minimum value of the gas flow rate
G_actual=G_min*1.3; #since actual flow rate is 1.3 times the minimum
slope2=L*Cl*60/G_actual; #slope of operating line
Hg2_actual=slope2*(T1-T2)+Hg1; #actual humidityat pt 2
Ggas=10000.; #minimum gas rate in kg/hr*m**2
Area1=G_actual/Ggas; #maximum area of the tower(based on gas)
Gliq=12000.; #minimum liquid rate in kg/hr*m**2
Area2=60*L/Gliq; #maximum area of the tower(based on liquid)
print "\n \n the maximum area of the tower(based on gas) is :%f m**2"%Area1
print "\n the maximum area of the tower(based on liquid) is :%f m**2"%Area2
dia=(Area1*4/3.14)**0.5; #diameter of the tower in m
#table
T=[20,30,40,50,55] #differnt temperature for different enthalpy calculation
#enthaly
H_bar=[101.79,133.0,166.49,210.0,278.72] #H_bar i.e. at equl.
Hg=[71.09,103.00,140.00,173.00,211.09] #Hg i.e. of operating line
i=0;
y = [0,0,0,0,0]
while(i<5): #looping for different enthalpy calculation of operating line
y[i]=1./(H_bar[i]-Hg[i]);
print "\n the enhalpy at :%f is :%f"%(T[i],y[i]);
i=i+1;
plot(Hg,y,"o-");
#area under this curve gives Ntog =4.26
Ntog=4.26; #no. of transfer unit
Gs=10000.; #gas flow rate
Htog=Gs/Ky_a; # height of transfer unit
height=Ntog*Htog; #height of the tower
print "\n \nthe tower height is :%f m"%height
#M = E + B + W
W=.2/100 *L*60; #windage loss(W)
B=0; #blow down loss neglected
E=G_actual*(.064-.016); #assuming air leaves fully saturated
M = E + B + W; #make up water is based onevaporation loss(E),blow down loss(B),windage loss(W)
print "\n make up water is based onevaporation loss(E),blow down loss(B),windage loss(W) is :%f kg /hr"%M
#end
T1=30.; #temperature at the inlet in degree celcius
T2=17.; #temperature at the exit in degree celcius
f=100000.; #flow rate of water in kg/hr
hi=.004; #humidity of incoming air in kg/kg of dry air
hl=.015; #humidity of leaving air in kg/kg of dry air
Hi=18.11; #enthalpy of incoming air in kg/kg of dry air
Hl=57.16; #enthalpy of leaving air in kg/kg of dry air
#w=mdry*(hl-hi) = mdry*0.011; -----equn 1st
#mass of water evaporated
#making energy balance: total heat in = total heat out
#heat in entering water + heat in entering air = heat in leaving water + heat in leaving air
#100000*1*(30-0) + mdry*Hi = (100000-w)*1*(17-0) + mdry*Hl ----eqn 2nd
#substituting eqn 1st in 2nd we get;
a=14.4; #cross sectional area of the tower in m**2
# Calculation
mdry=(T1*f-T2*f)/(Hl-Hi-T2*.011); #mass of dry air
velocity=mdry/a; #air velocity in kg/m**2* hr
x=mdry*.011; #make up water needed in kg/hr
# Result
print "\n the make up water needed is :%f kg /hr"%x
print "\n the velocity of air is as :%f kg/hr"%velocity
#end
import math
T1=65; #dry bulb temperature at the inlet in degree celcius
f=3.5; #flow rate of air in m**3/s
hi=1.017; #humidity of incoming air in kg/kg of dry air
hl=.03; #humidity of leaving air in kg/kg of dry air
k=1.12; #mass transfer coefficient in kg/m**3*s
y1=.017; #molefraction at recieving end
y2=.03; #molefraction at leaving end
#substituting eqn 1st in 2nd we get;
a=2; #cross sectional area of the tower in m**2
d=1.113; #density o fair in kg/m**3
# Calculation
m=(f*d) #mass flow rate of air
gs=m/hi; #air velocity in kg/m**2* hr
ys_bar=.032;
#for recirculation humidifier
# Result
z=math.log((ys_bar-y1)/(ys_bar-y2))*gs/k; #length of the chamber required
print "\n the length of the chamber required is :%f m"%z
#end