Chapter 9: Maxwells Equations

Example 9.1, Page number: 375

In [3]:
 
import scipy
import scipy.integrate

#Variable Declaration

u2=20
B2=4
l=0.06
#Calculations

def ansa(x,y): 
 return 4*10**3
Va, erra = scipy.integrate.dblquad(lambda y , x: ansa(x,y),  #in V  
             0, 0.06, lambda y: 0, lambda y: 0.08)

Vb=-u2*B2*l  #in mV

def ansc(x,y): 
 return 4
psic, errc = scipy.integrate.dblquad(lambda y , x: ansc(x,y),  #in mWb  
             0, 0.06, lambda y: 0, lambda y: 1)

#Results

print 'Va =',Va,'sin(10^6t) V'
print 'Vb =',Vb,'mV'
print 'Vc= ',psic*10**3,'cos(10^6t-y) -',psic*10**3,'cos(10^6t) V'
Va = 19.2 sin(10^6t) V
Vb = -4.8 mV
Vc=  240.0 cos(10^6t-y) - 240.0 cos(10^6t) V

Example 9.3, Page number: 379

In [6]:
 
import scipy

#Variable Declaration

n1=200
n2=100        
S=10**-3               #cross section in m^2
muo=4*scipy.pi*10**-7  #permeabiility of free space
mur=500                #relative permeability
r=10*10**-3            #radius in m

#Calculations

psiI=n1*muo*mur*S/(2*scipy.pi*r)

#Result

print 'V2 =',psiI*n2*300*scipy.pi,'cos(100pi t) V'
print '= 6Pi cos(100pi t) V'
V2 = 188.495559215 cos(100pi t) V
= 6Pi cos(100pi t) V

Example 9.5, Page number: 393

In [1]:
 
import scipy
import cmath
from numpy import *


#Variable Declaration

z3=1j
z4=3+4j 
z5=-1+6j 
z6=3+4j
z7=1+1j
z8=4-8j

#Calculations

z1=(z3*z4/(z5*z6))
z2=scipy.sqrt(z7/z8)
z1r=round(z1.real,4)        #real part of z1 rounded to 4 decimal places
z1i=round(z1.imag,4)        #imaginary part of z1 rounded to 4 decimal places
z2r=round(z2.real,4)        #real part of z2 rounded to 4 decimal places
z2i=round(z2.imag,4)        #imaginary part of z2 rounded to 4 decimal places

absz2=round(abs(z2),4)      #absolute value of z2 rounded to 4 decimal places

ang=scipy.arctan(z2i/z2r)*180/scipy.pi  #in degrees

#Results

print 'z1 =',z1r,'+',z1i,'j'
print 'z2 ='
print 'mod =',absz2,'and angle=',round(ang,1),'degrees'
z1 = 0.1622 + -0.027 j
z2 =
mod = 0.3976 and angle= 54.2 degrees