# Variables
#Case 1
Vg = 0.132;
SV = 0.12; #Specific Volume
#As SV is less than Vg, steam is wet
# Calculations and Results
x = SV/Vg;
print ' For Case 1 ';
print 'Part of wet steam: %2.2f'%(x);
#Case 2
T = 200;
Tsat = 179.9; #Satuaration Temperature
#Steam is superheated as T > Tsat
D_sh = T-Tsat;
print ' For Case 2 ';
print 'Degree of Superheat: %2.1f C'%(D_sh);
#Case 3
P = 20.; #Pressure in bars
Hf = 908.8; #kJ/kg
Hfg = 1890.7; #kJ/kg
Hg = 2799.5; #kJ/kg
H = 2650;
#Steam is wet as Specific enthalpy is less than Hg
x = (H-Hf)/Hfg;
print ' For Case 3 ';
print 'Part of wet steam: %2.2f'%(x);
#Case 4
T = 150; #in Celcius
SV = 0.3928; #Specific Volume in m**3/kg
Vg = 0.3928; #in m**3/kg
print ' For Case 4 ';
print 'As SV = Vg , steam is dry saturated'
#Case 5
P = 10; #in bars
S = 5.697;
Sf = 2.319;
Sfg = 4.448;
Sg = 6.623;
#As Sample specific entropy is less than Sg and more than Sf, steam is wet
x = (S-Sf)/Sfg;
print ' For Case 5 ';
print 'Part of wet steam: %2.1f'%(x);
# Variables
#At 10 bar pressure
P = 10.; #in bars
x = 0.8;
Vg = 0.194; #in kJ/kg
# Calculations and Results
W = P*100*x*Vg;
print 'External Work Done: %3.2f kJ/kg'%(W);
Hf = 762.8; #in kJ/kg
Hfg = 2015.3; #in kJ/kg
H = Hf+(x*Hfg);
U = H-W;
print 'Internal energy: %3.2f kJ/kg'%(U);
Vf = 0.001127; #in m**3/kg
Uf = Hf-(P*100*Vf);
Ux = U-Uf;
print 'Internal Heat of Evaporation: %3.2f kJ/kg'%(Ux);
Sf = 2.139; #in kJ/kg K
Sfg = 4.448; #in kJ/kg K
S = Sf+(x*Sfg);
print 'Entropy of steam: %3.3f kJ/kg'%(S);
# Variables
#Condition at 10 bar pressure
#Steam is wet
x = 0.95;
P = 10; #in bars
Hf = 762.8; #in kJ/kg
Hfg = 2015.3; #in kJ/kg
# Calculations and Results
H = Hf+(x*Hfg);
print 'Enthalpy : %3.2f kJ/kg'%(H);
#Now we calculate Work Done
Vg = 0.194; #in m**3/kg
W = P*100*x*Vg;
U = H-W;
print 'Internal energy: %3.0f kJ/kg'%(U);
# Variables
#Condition at pressure 15 bars
P = 15.; #in bars
Hf = 844.9; # in kJ/kg
Hfg = 1947.3; #in kJ/kg
Vg = 0.132; #in m**3/kg
x = 0.9; #Dryness fraction
# Calculations and Results
W = P*100*x*Vg;
print 'External Work Done: %3.2f kJ/kg'%(W);
H = Hf+(x*Hfg);
U = H-W;
print 'Internal Energy: %3.1f kJ/kg'%(U);
import math
# Variables
x = 0.9; #Dryness Fraction
m = 1.5; #mass in kg
Cps = 2.1;
#Condition at 10 bars
P = 10.;
Tsat = 179.9; #in Celcius
T = 250.; #in Celcius
Hg = 2778.1; #in kJ/kg
Vg = 0.194; #in m**3/kg
Cps = 2.1;
H1 = Hg+(Cps*(T-Tsat));
Vsup = ((T+273)/(Tsat+273))*Vg;
U1 = H1-(P*100*Vsup);
Sf = 2.139; #in kJ/kg K
Sfg = 4.448; #in kJ/kg K
Sg = 6.623; #in kJ/kg K
S1 = Sg+(Cps*math.log((T+273)/(Tsat+273)));
# Calculations and Results
#Conditions at 2.8 bars
P2 = 2.8;
Hf = 551.4; #in kJ/kg
Hfg = 2170.7; #in kJ/kg
Vg = 0.646; #in m**3/kg
H2 = Hf+(x*Hfg);
U2 = H2-(P2*100*x*Vg);
Sf = 1.647; #in kJ/kg K
Sfg = 5.368; #in kJ/kg K
S2 = Sf+(x*Sfg);
U = m*(U2-U1);
print 'The change in internal energy: %3.1f kJ/kg'%(U);
S = S2-S1;
print 'The change in Entropy: %3.4f kJ/kg K'%(S);
import math
# Variables
#Conditions at 8 bar
P = 8.; #Pressure in bar
x = 0.9; #dryness fraction
Hf = 721.1; #in kJ/kg
Hfg = 2048.0; #in kJ/kg
Vg = 0.240; #in m**3/kg
H1 = Hf+(x*Hfg);
V1 = x*Vg;
# Calculations and Results
#Enthalpy of superheated steam at 8 bar and 200 Celcius
Hg = 2769.1;
Cps = 2.1;
Tsup = 200+273; #in Celcius
Tsat = 170.4+273; #in Celcius
H2 = Hg+(Cps*(Tsup-Tsat));
V2 = (Vg*Tsup)/Tsat;
H = H2-H1;
print 'Heat supplied: %3.1f kJ/kg'%(H);
W = P*100*(V2-V1);
print 'Work Done: %3.3f kJ/kg'%(W);
#At 8 bar
Sf = 2.046; #in kJ/kg K
Sfg = 4.617; #in kJ/kg K
Sg = 6.663; #in kJ/kg K
S1 = Sf+(x*Sfg);
S2 = Sg+(Cps*(math.log(Tsup/Tsat)));
S = S2-S1;
print 'The Enthalpy change during process: %3.1f kJ/kg K'%(S);
# Variables
#Conditions at 10 bar
P1 = 10.; #in bars
Hg = 2778.1; #in kJ/kg
Tsat = 179.9+273; #Temperature in K
Vg = 0.194; #in m**3/kg
# Calculations and Results
#Conditions at 10 bar and 300 Celcius
Cps = 2.1;
Tsup = 300+273;
H1 = Hg+(Cps*(Tsup-Tsat));
V1 = Vg*(Tsup/Tsat);
U1 = H1-(P1*100*V1);
print 'The Internal energy: %3.1f kJ/kg'%(U1);
#At 1.4 bar and other conditions
P2 = 1.4; #in bars
x = 0.8; #Dryness Fraction
Hf = 458.4; #in kJ/kg
Hfg = 2232.0; #in kJ/kg
Vg = 1.237; #in m**3/kg
H2 = Hf+(x*Hfg);
V2 = x*Vg;
U2 = H2-(P2*100*V2);
U = U2-U1;
print 'The change in internal energy: %3.1f kJ/kg'%(U);
# Variables
#Conditions at 8 bar
P = 8.; #in bars
x = 0.8; #Dryness Fraction
Hf = 721.1; #in kJ/kg
Hfg = 2048.0; #in kJ/kg
# Calculations and Results
H1 = Hf+(x*Hfg);
H2 = H1+410; #After adding 410 kJ of heat
Hg = 2769.1; #in kJ/kg
print 'The Enthalpy of steam: %3.1f kJ/kg'%(H2);
print 'The steam is superheated'
V2 = 0.240; #in m**3/kg
Vg = V2;
Den = 1./Vg;
print 'The Density of steam: %3.3f kg/m**3'%(Den);
#For throttling H1 = H2
# Variables
#At 11 bar
Hf = 781.3; #in kJ/kg
Hfg = 2000.4; #in kJ/kg
# Calculations
#At 1 bar
Hg = 2675.5; #in kJ/kg
x = (Hg-Hf)/Hfg;
# Results
print 'The Dryness Fraction: %3.3f kJ/kg'%(x);
# Variables
#Conditions at 4 bar
P1 = 4.; #in bars
Hf = 604.7; #in kJ/kg
Hfg = 2133.8; #in kJ/kg
Vg = 0.463; #in m**3/kg
x1 = 0.9;
H1 = Hf+(x1*Hfg);
V1 = x1*Vg;
# Calculations and Results
#Now at 12 bar pressure
P2 = 12; #in bars
V2 = (P1*V1)/P2;
Vg = 0.163; #in m**3/kg
print 'At 12 bar, V2: %3.3f kJ/kg'%(V2);
print 'As Vg>V2, steam is wet'
x2 = V2/Vg;
print 'The dryness fraction at 12 bars: %3.2f '%(x2);
Hf = 798.6; #in kJ/kg
Hfg = 1986.2; #in kJ/kg
H2 = Hf+(x2*Hfg);
print 'The Final enthalpy of steam: %3.1f kJ/kg'%(H2);
# note : rounding off error.
# Variables
#At 20 degree Celcius
Cpw = 4.187; #in kJ/kg
Tw = 20.;
H1 = Cpw*Tw;
# Calculations
#At 8 bar condition
m = 4; #mass in kg
Cps = 2.1; #in kJ/kg
Tsat = 170.4+273; #in K
Hg = 2769.1; #in kJ/kg
Tsup = 200+273; #in K
H2 = Hg+(Cps*(Tsup-Tsat));
Q = m*(H2-H1);
# Results
print 'Heat to be added: %3.1f kJ'%(Q);
# Variables
#Combined Seperating and Throttling Calorimeter
m1 = 2; #mass of water seperated in kg
m = 20.5; #Steam discharged from calorimeter in kg
mt = m1+m; #Steam inlet in kg
# Calculations
x1 = m/(mt); #Dryness fraction
#At 12 bar pressure
Hf = 798.6; #in kJ/kg
Hfg = 1986.2; #in kJ/kg
P_bar = 760; #Pressure in mm
P_fin = 5; #Pressure in mm
P = (P_bar+P_fin)*1.01325/P_bar; #Absolute Pressure
#Now at 1.02 bar
Cp = 2.2; #in kJ/kg K
Hg = 2676.34; #in kJ/kg
Tsat = 99.66+273; #in K
Tsup = 110+273; #in K
H2 = Hg+(Cp*(Tsup-Tsat));
x2 = (H2-Hf)/Hfg;
x = x1*x2;
# Results
print 'The Dryness Fraction: %3.3f'%(x);
# Variables
#At 7 bar and 300 Celcius
P = 7.; #in bars
Cps = 2.1;
Tsup = 300+273; #in K
Tsat = 165+273; #in K
Hg = 2763.5; #in kJ/kg
# Calculations
H1 = Hg+(Cps*(Tsup-Tsat));
x2 = 0.9; #Dryness Fraction
Hf = 697.2; #in kJ/kg
Hfg = 2066.3; #in kJ/kg
H2 = Hf+(x2*Hfg);
m = (H1-Hg)/(Hg-H2);
# Results
print 'The mass flow rate of wet steam: %3.3f kg/kg'%(m);
# Variables
#Conditions at 10 bar
P = 10.; #in bar
Tsat = 179.9+273; #in K
Hf = 762.8; #in kJ/kg
Hfg = 2015.3; #in kJ/kg
Hg = 2778.1; #in kJ/kg
Vg = 0.194; #in m**3/kg
Sf = 2.139; #in kJ/kg K
Sg = 6.623; #in kJ/kg K
Sfg = 4.448; #in kJ/kg K
x = 0.91; #Dryness Fraction
m = 3.; #in kg
# Calculations and Results
#Now for wet steam
H = Hf+(x*Hfg);
H_final = m*H;
print 'The total Enthalpy: %3.1f kJ'%(H_final);
V = x*Vg;
U = H-(P*100*V);
U_final = m*U;
print 'The Internal Energy: %3.1f kJ'%(U_final);
S = Sf+(x*Sfg);
S_final = m*S;
print 'The Entropy: %3.3f kJ/K'%(S_final);
#Now Case 2
print 'Now for Case 2 ';
Tsat = 179.9+273; #in K
Tsup = 200+273; #in K
Cp = 2.1; #in kJ/kg K
H = Hg+(Cp*(Tsup-Tsat));
H_final = m*H;
print 'The Enthalpy: %3.1f kJ'%(H_final);
Vsup = (Tsup*Vg)/Tsat;
U = H-(P*100*Vsup);
U_final = m*U;
print 'The change in internal energy: %3.1f kJ'%(U_final);
S = Sg+(Cp*math.log(Tsup/Tsat));
S_final = m*S;
print 'The Entropy: %3.1f kJ/K'%(S_final);
#Now Case 3
print ' Now for case 3 ';
H = Hg;
H_final = m*H; #in kJ
print 'The total enthalpy: %3.1f kJ'%(H_final);
V = Vg;
U = H-(P*100*V);
U_final = m*U;
print 'The change in internal energy: %3.1f kJ'%(U_final);
S = Sg;
S_final = m*S;
print 'The total entropy: %3.3f kJ/kg'%(S_final);
# note : rounding off error
import math
# Variables
#At 15 bar condition
Tsat = 198.3+273; #in K
m = 7.; #in kg
Hg = 2792.2; #in kJ/kg
Tsup = 300.+273; #in K
Cps = 2.1; #in kJ/kg K
# Calculations and Results
H1 = Hg+(Cps*(Tsup-Tsat));
Cpw = 4.187; #in kJ/kg K
H2 = Cpw*50;
Q = m*(H1-H2);
print 'The total amount of heat required: %3.1f kJ'%(Q);
Sg = 6.445; #in kJ/kg K
S2 = Sg+(Cps*math.log(Tsup/Tsat));
Sf = 0.704; #in kJ/kg K
S1 = Sf;
S = m*(S2-S1);
print 'The change in Entropy: %3.2f kJ/K'%(S);
# Variables
#Conditions at 10 bar
P = 10.; #in bar
Tsat = 179.9+273; #in K
Hf = 762.8; #in kJ/kg
Hfg = 2015.3; #in kJ/kg
Hg = 2778.1; #in kJ/kg
Vg = 0.194; #in m**3/kg
x = 0.7; #Dryness Fraction
V = x*Vg;
m = 0.2/V; #mass in kg
mf = 2/V; #mass in kg
# Calculations and Results
H = Hf+(x*Hfg);
H_tot = H*mf;
print 'The total enthalpy: %3.1f kJ'%(H_tot);
U = H-(P*100*V);
U_tot = U*mf;
print 'The internal energy: %3.1f kJ'%(U_tot);
W = P*100*V;
W_tot = W*mf;
print 'The external work of evaporation: %3.1f kJ'%(W_tot);
# Variables
#Conditions at 10 bar pressure
P = 10.; #in bar
Tsat = 179.9+273; #in K
Tsup = 350+273;
x = 0.9; #Dryness Fraction
Hf = 762.8; #in kJ/kg
Hfg = 2015.3; #in kJ/kg
Hg = 2778.1; #in kJ/kg
Vg = 0.194; #in m**3/kg
Cps = 2.1; #in kJ/kg K
# Calculations
Ha = Hg+(Cps*(Tsup-Tsat));
Hb = Hf+(x*Hfg);
H_mix = (Ha+Hb)/2;
Tsupe = ((H_mix-Hg)/Cps)+Tsat;
Tsuper = Tsupe-273;
# Results
print 'Temperature of superheated steam: %3.0f Celcius'%(Tsuper);
# Variables
#Now at 10 bar pressure
V = 1.5; #Volume in m**3
P = 10; #Pressure in bar
x = 0.91; #Dryness fraction
Vg = 0.194; #in m**3/kg
m = V/Vg;
# Calculations
Vf = x*Vg;
m_f = V/Vf;
# Results
print 'Amount of water to be placed in container: %2.2f kg'%(m);
print 'Mass of water required: %2.2f kg'%(m_f);
# Variables
#Conditions at 7 bat
P = 7.; #in bar
Tsat = 165.+273; #in K
Hf = 697.2; #in kJ/kg
Hfg = 2066.3; #in kJ/kg
Hg = 2763.5; #in kJ/kg
Vg = 0.273; #in m**3/kg
D = 0.02; #in m
vel = 17.; #in m/s
Cps = 4.187; #in kJ/kg K
Tw1 = 25.; #in Celcius
Tw2 = 100.; #in Celcius
Vfr = (22./7)*D*D*vel*(1./4)*60; #Volume flow rate in m**3/min
x = 0.9; #Dryness Fraction
V = x*Vg;
# Calculations and Results
Mfr = Vfr/V; #Mass flow rate
print 'The mass flow rate of steam: %2.2f kg/min'%(Mfr);
H1 = Hf+(x*Hfg);
H2 = Cps*100;
Mw = (Mfr*(H1-H2))/(Cps*(Tw2-Tw1));
print 'The mass flow rate of water: %2.2f kg/min'%(Mw);
# Variables
#Conditions at 9 bar
P = 9.; #in bar
Tsat = 175.4+273; #in K
Vg = 0.215; #in m**3/kg
Hf = 742.8; #in kJ/kg
Hfg = 2031.1; #in kJ/kg
Hg = 2773.9; #in kJ/kg
T2 = 250.+273; #in K
x = 0.91; #Dryness Fraction
V1 = x*Vg;
# Calculations and Results
V2 = 0.2696; #From Steam Table
W = P*100*(V2-V1);
print 'The Work Output: %2.2f kJ/kg'%(W);
H1 = Hf+(x*Hfg);
H2 = 2946.3; #From steam table in kJ/kg
Q = H2-H1;
print 'The heat supplied to steam: %2.2f kJ/kg'%(Q);
U = Q-W;
print 'The internal energy of steam increases by: %2.2f kJ/kg'%(U);
# Variables
#Conditions at 16 bar
P = 16.; #in bar
Vov = 0.015; #Volume of Vessel
Mos = 0.1; #Mass of steam
SV = Vov/Mos; #Specific Volume
Vg = 0.124; #in m**3/kg
# Calculations and Results
Tsat = 201.4+273; #in K
Tsup = (SV/Vg)*Tsat;
print 'The temperature of steam: %2.2f K'%(Tsup);
#Now cooling takes place
Tsat = 191.16; #From steam table
print 'After cooling, temperature of steam: %2.2f K'%(Tsat);
#Now cooled to 10 bar pressure
P1 = 16; #in bar
Vg = 0.194; #in m**3/kg
v = 0.15; #in m**3/kg
x = v/Vg; #Dryness Fraction
#For consmath.tant Volume process W = 0
Hg = 2794.0; #in kJ/kg
Hf = 762.8; #in kJ/kg
Hfg = 2015.3; #in kJ/kg
Cps = 2.1; #in kJ/kg K
Tsup = 300.84; #in C
Tsat = 201.4; #in C
H1 = Hg+(Cps*(Tsup-Tsat));
U1 = H1-(P1*100*v);
P2 = 10; #in bar
H2 = Hf+(x*Hfg);
U2 = H2-(P2*100*v);
Q = U2-U1;
print 'Heat rejected by system: %2.2f kJ/kg'%(Q);
# note : rounding off error.
# Variables
#Isothermal process
P = 10.; #in bar
Tsat = 179.9+273; #in K
Vg = 0.194; #in m**3/kg
Hf = 762.6; #in kJ/kg
Hfg = 2015.3; #in kJ/kg
Hg = 2778.1; #in kJ/kg
x1 = 1.; #Dryness Fraction
Sf = 2.139; #in kJ/kg K
Sfg = 4.448; #in kJ/kg K
Sg = 6.623; #in kJ/kg K
V = 0.3; #in m**3
m = V/Vg; #in kg
V2 = Vg/2;
x2 = V2/Vg; #Dryness Fraction
# Calculations and Results
W = P*100*(V2-Vg)*m;
print 'Work Done: %2.2f kJ'%(W);
H1 = Hg;
H2 = Hf+(x2*Hfg);
Q = m*(H2-H1);
print 'Change in Enthalpy: %2.2f kJ'%(Q);
U = (Q-W);
print 'Change in total Internal Energy: %2.2f kJ'%(U);
S1 = Sg;
S2 = Sf+(x2*Sfg);
S = m*(S2-S1);
print 'Change in Entropy: %2.2f kJ/K'%(S);
#Now for case 2 where PV = C
print 'Now for case 2';
V01 = 0.097;
V02 = 0.5*V01;
P1 = 10; #in bars
P2 = (P1*V01)/V02; #in bars
#Now at 20 bars
Vg1 = 0.0996; #in m**3/kg
V2 = 0.097;
x2 = V2/Vg1; #Dryness Fraction
Hf = 908.8; #in kJ/kg
Hfg = 1890.7; #in kJ/kg
H2 = Hf+(x2*Hfg);
H = m*(H2-Hg);
print 'Change in Enthalpy: %2.2f kJ'%(H);
W = m*P1*100*Vg*(math.log(V02/V01));
print 'Total work done: %2.2f kJ'%(W);
U = H; #as P1 V1 = P2 V2
Q = U+W;
print 'Change in Enthalpy: %2.2f kJ'%(Q);
#Now at 20 bar pressure
Sf = 2.447; #in kJ/kg K
Sfg = 3.894; #in kJ/kg K
Sg1 = 6.341; #in kJ/kg K
S2 = Sf+(x2*Sfg);
S1 = Sg;
S = m*(S2-S1)
print 'Change in Entropy: %2.3f kJ/K'%(S);
# note : rounding off error.
import math
# Variables
#Initial conditions at 7 bar pressure
P1 = 7.; #in bars
Vg1 = 0.273; #in m**3/kg
V1 = Vg1; #in m**3/kg
Hg1 = 2763.5; #in kJ/kg
H1 = Hg1;
Tsat = 165+273; #in K
Sf = 1.992; #in kJ/kg K
Sfg = 4.716; #in kJ/kg K
Sg = 6.708; #in kJ/kg K
n = 1.1;
# Calculations and Results
#Final conditions at 0.5 bar
P2 = 0.5; #in bars
V2 = ((P1*(V1**1.1))/P2)**(1./1.1); #umath.sing P(V)**1.1 = Consmath.tant
W = ((P1*100*V1)-(P2*100*V2))/(n-1);
print 'Work Done: %3.2f kJ'%(W);
Hf2 = 340.6; #in kJ/kg
Hfg2 = 2305.4; #in kJ/kg
Vg2 = 3.24; #in m**3/kg
x2 = V2/Vg2; #Dryness Fraction
H2 = Hf2+(x2*Hfg2);
U1 = H1-(P1*100*V1);
U2 = H2-(P2*100*V2);
U = U2-U1;
print 'Change in Internal Energy: %3.2f kJ/kg'%(U);
Q = U+W; #From First law of Thermodynamics
print 'Heat Transferred: %3.2f kJ/kg'%(Q);
S1 = Sg;
#At 0.5 bar
Sf2 = 1.091; #in kJ/kg K
Sfg2 = 6.503; #in kJ/kg K
Sg2 = 7.594; #in kJ/kg K
S2 = Sf2+(x2*Sfg2);
S = S2-S1;
print 'Change in Entropy: %3.2f kJ/kg K'%(S);
import math
# Variables
#At state 1
P1 = 20; #in bar
V = 2;
Vg1 = 0.0996; #in m**3/kg
Tsat1 = 212.4+273; #in K
Tsup1 = 573; #in K
V1 = Vg1*(Tsup1/Tsat1);
m = V/V1;
#At state 2
V2 = V1;
Vg2 = V2;
P2 = 16.9; #From Steam Table
#Calculations
Hg1 = 2799.5; #in kJ/kg
Cps = 2.1; #in kJ/kg K
H1 = m*(Hg1+(Cps*(Tsup1-Tsat1)));
U1 = H1-(P1*100*V);
Hg2 = 2795.5; #in kJ/kg from Steam table
H2 = m*Hg2;
U2 = H2-(P2*100*V);
# Calculations and Results
Q = U2-U1;
print 'Heat Transferred: %3.1f kJ'%(Q);
Sg1 = 6.341; #in kJ/kg K
S1 = Sg1+(Cps*math.log(Tsup1/Tsat1));
S2 = 6.4022; #From Steam Table
S = m*(S2-S1);
print 'Change in Entropy: %3.3f kJ/K'%(S);
import math
# Variables
#For Throttling process, H1 = H2
#At 15 bar pressure
P1 = 15.; #in bar
Hf1 = 844.9; #in kJ/kg
Hfg1 = 1947.3; #in kJ/kg
x1 = 0.73; #Dryness Fraction
#At 1 bar pressure
P2 = 1.; #in bar
Hf2 = 417.5; #in kJ/kg
Hfg2 = 2258.0; #in kJ/kg
Hg2 = 2675.5; #in kJ/kg
H2 = 2266.4; #in kJ/kg
# Calculations and Results
H1 = Hf1+(x1*Hfg1);
x2 = (H2-Hf2)/Hfg2;
#Now if x1 = 0.95
H1 = Hf1+(0.95*Hfg1);
H2 = H1;
#At 1 bar
Hg = 2675.5;
Cps = 2.1;
x = 0.93; #New dryness fraction
T = (H2-Hg)/Cps; #Temperature difference
Tsat = 99; #in Celcius
Tsup = Tsat+T;
print 'Temperature of superheated steam: %3.1f Celcius'%(Tsup);
#Now at 15 bar
Sf = 2.315; #in kJ/kg K
Sfg = 4.130; #in kJ/kg K
Sg = 6.445; #in kJ/kg K
S1 = Sf+(x*Sfg);
#Now at 1 bar
Sg1 = 7.360; #in kJ/kg K
S2 = Sg1+(Cps*math.log((Tsup+273)/(Tsat+273)));
S = S2-S1;
print 'Change in Entropy: %3.2f kJ/kg K'%(S);
#Heat lost by Steam = Heat gained by water and calorimeter
# Variables
ms = 2.; #in kg
Hf1 = 697.2; #in kJ/kg
Hfg1 = 2066.3; #in kJ/kg
Hf2 = 146.7; #in kJ/kg
T2 = 35.; #in Celcius
T1 = 15.; #in Celcius
mg = 56; #in kg
# Calculations
Cpw = 4.187; #in kJ/kg K
H_gained = mg*Cpw*(T2-T1);
x = (((H_gained)/2)+(Hf2-Hf1))/Hfg1;
# Results
print 'The dryness fraction is %2.2f '%(x);
# Variables
Ms = 10.;
Mw = 1.;
# Calculations
x = (100*Ms)/(Ms+Mw);
# Results
print 'The Dryness Fraction of steam is %2.1f percent'%(x);
import math
# Variables
P1 = 11.; #in bar
P2 = 1.1; #in bar
T2 = 130.+273; #in K
Cps = 2.1; #in kJ/kg K
# Calculations
#At 11 bar
Hf1 = 781.3; #in kJ/kg
Hfg1 = 2000.4; #in kJ/kg
#At 1.1 bar
Hg2 = 2679.7; #in kJ/kg
Tsat = 102.3+273; #in K
Tsup = 130+273;
#Now for throttling process, H1 = H2
H2 = Hg2+(Cps*(Tsup-Tsat));
x = ((H2-Hf1)*100)/Hfg1;
# Results
print 'The dryness fraction of steam: %2.1f'%(x);
# Variables
#Combined seperating and throttling calorimeter
Ms = 5.; #in kg
Mw = 0.5; #in kg
Cps = 2.1; #in kJ/kg K
Man = 166.8; #in mm of Hg
Bar = 733.6; #in mm of Hg
# Calculations
x1 = Ms/(Ms+Mw);
P = Man+Bar;
P_bar = (1.01325*P)/760; #Pressure in bar
#From steam table
Hf1 = 742.8; #in kJ/kg
Hfg1 = 2031.1; #in kJ/kg
Tsat = 104.8+273; #in K
Tsup = 110.3+273; #in K
Hg = 2683.5; #in kJ/kg
H2 = Hg+(Cps*(Tsup-Tsat));
x2 = (H2-Hf1)/Hfg1;
x = x1*x2;
# Results
print 'The dryness fraction of steam: %2.3f'%(x);
#Combined seperating and throttling calorimeter
# Variables
Mw = 8.; #in kg
M = 63.; #in kg
Ms = M-Mw; #in kg
P1 = 81.5; #Pressure after throttling in mm
P2 = 754.; #Barometer reading in mm
SD = 13.6; #Specific Density of Hg
# Calculations
x1 = Ms/(Ms+Mw); #Dryness Fraction
P = (P1/SD)+P2; #Pressure in mm
P = 1.01325; #Pressure in bar
#Now at 7.5 bar pressure
Hf1 = 709.2; #in kJ/kg
Hfg1 = 2057.0; #in kJ/kg
#Now at 1.01325 bar
Hg2 = 2676.0; #in kJ/kg
Tsat = 100+273; #in K
Cps = 2.1; #in kJ/kg K
Tsup = 110+273; #in K
#For throttling H1 = H2
H2 = Hg2+(Cps*(Tsup-Tsat));
x2 = (H2-Hf1)/Hfg1;
x = x1*x2;
# Results
print 'The dryness fraction of steam: %2.3f'%(x);
# Variables
#At 9.2 bar pressure
x1 = 0.96; #Dryness Fraction
Sf1 = 2.1038; #in kJ/kg K
Sg1 = 6.6151; #in kJ/kg K
#At 3.55 bar pressure
Sf2 = 1.7327; #in kJ/kg K
Sg2 = 6.9358; #in kJ/kg K
Vg2 = 0.5173; #in m**3/kg
#Now at 0.36 bar pressure
Vg3 = 4.408; #in m**3/kg
# Calculations
S1 = Sf1+(x1*(Sg1-Sf1));
#As process is adiabatic
S2 = S1;
#From steam table, Sg = 6.9358 > S2
x2 = (S2-Sf2)/(Sg2-Sf2);
V2 = x2*Vg2;
#As volume remains consmath.tant
V3 = V2;
x3 = V3/Vg3;
# Results
print 'The dryness fraction of steam: %2.3f'%(x3);
# Variables
#At 10 bar pressure
m = 1./(0.9*0.194);
Hf1 = 762.6; #in kJ/kg
x1 = 0.9; #Dryness Fraction
Hfg1 = 2013.6; #in kJ/kg
H1 = Hf1+(x1*Hfg1);
# Calculations and Results
Hf2 = 640.1; #in kJ/kg
Hfg2 = 2107.4; #in kJ/kg
x2 = (H1-Hf2)/Hfg2;
Vg2 = 0.375;
Ms = (1./(x2*Vg2));
Vg3 = 0.462;
#Now mass of steam blown off
M = m-Ms;
print 'Mass of steam blown off: %2.3f kg'%(M);
V = 1; #Volume in m**3
x3 = V/(Ms*Vg3);
print 'Dryness fraction of steam: %2.3f '%(x3);
# Variables
#At 25 bar pressure
P = 25.; #Pressure in bar
x = 0.8; #Dryness fraction
Hf = 962.1; #in kJ/kg
Hfg = 1841; #in kJ/kg
Vg = 0.0801; #in m**3/kg
# Calculations and Results
H = Hf+(x*Hfg);
print 'Enthalpy: %2.1f kJ/kg'%(H);
U = H-(P*100*x*Vg);
print 'Internal Energy: %2.1f kJ/kg'%(U);
import math
# Variables
Ms = 20.; #in kg
Mw = 2.; #in kg
Cps = 2.1; #in kJ/kg K
x1 = Ms/(Ms+Mw); #Dryness fraction
#At 12 bar pressure
Hf1 = 798.6; #in kJ/kg
Hfg1 = 1986.2; #in kJ/kg
#At 1 bar pressure
Hg2 = 2675.5; #in kJ/kg
Tsup = 110.+273; #in K
Tsat = 99.+273; #in K
# Calculations
#For throttling, H1 = H2
H2 = Hg2+(Cps*(Tsup-Tsat));
x2 = (H2-Hf1)/Hfg1;
x = x1*x2;
# Results
print 'Dryness fraction of steam: %2.4f kJ'%(x);
import math
# Variables
V = 0.15; #in m**3
P = 4.; #in bar
x = 0.8; #Dryness fraction
#Now at 4 bar pressure
P = 4.; #in bar
Vg = 0.463; #in m**3/kg
# Calculations
SV = x*Vg;
Mos = V/SV; #Mass of Steam
#Now if Volume is 1 m**3
Ms = 1./SV; #in kg
#At 4 bar pressure
Hf = 604.7; #in kJ/kg
Hfg = 2133.8; #in kJ/kg
H = Ms*(Hf+(x*Hfg));
# Results
print 'Enthalpy of 1 m**3 steam: %2.2f kJ'%(H);
# note : rounding off error.
import math
# Variables
P1 = 9.; #in bar
P2 = 1.; #in bar
T2 = 115.+273; #in K
m = 1.8; #in kg
m1 = 0.2; #in kg
x1 = m/(m+m1); #Dryness fraction
# Calculations
#Now from steam table
Hf = 742.8; #in kJ/kg
Hfg = 2031.1; #in kJ/kg
Hg = 2675.5; #in kJ/kg
Tsat = 99+273; #in K
Tsup = 115+273; #in K
Cps = 2.1; #in kJ/kg K
H2 = Hg+(Cps*(Tsup-Tsat));
x2 = (H2-Hf)/Hfg;
x = x1*x2;
# Results
print 'The dryness fraction: %2.4f kJ'%(x);
import math
# Variables
m1 = 0.45; #in kg
m = 7.; #in kg
P1 = 12.; #in bar
Bar = 760.; #mm of Hg Barometer reading
Man = 180.; #mm of Hg Manometer Reading
Cps = 2.1; #in kJ/kg K
P = Bar+Man;
P2 = (P*1.01325)/760; #Pressure in bar
Tsup = 140.+273; #in K
x1 = m/(m+m1);
#Now at 12 bar pressure
Hf = 798.6; #in kJ/kg
Hfg = 1986.2; #in kJ/kg
# Calculations
#At 1.25 bar pressure
Hg = 2685.3; #in kJ/kg
Tsat = 106+273; #in K
#For throttling H1 = H2
H2 = Hg+(Cps*(Tsup-Tsat));
x2 = (H2-Hf)/Hfg;
x = x1*x2;
# Results
print 'The dryness fraction: %2.3f '%(x);
import math
# Variables
#Case 1
P = 10.; #in bar
Cps = 2.1; #in kJ/kg K
x = 0.85; #Dryness fraction
Hf = 762.8; #in kJ/kg
Hfg = 2015.3; #in kJ/kg
Vg = 0.194; #in m**3/kg
Hg = 2778.1; #in kJ/kg
# Calculations and Results
H = Hf+(x*Hfg);
print 'Case 1: When x = 0.85 ';
print 'Enthalpy of steam: %2.2f kJ'%(H);
U = H-(P*100*x*Vg);
print 'Internal Energy of steam: %2.2f kJ'%(U);
#Case 2
H = Hg; #in kJ/kg
print ' Case 2: When steam is dry and saturated ';
print 'Enthalpy of steam: %2.2f kJ'%(H);
U = H-(P*100*Vg);
print 'Internal Energy of steam: %2.2f kJ'%(U);
#Case 3
Tsup = 300.+273; #in K
Tsat = 179.9+273; #in K
H = Hg+(Cps*(Tsup-Tsat));
print ' Case 3: When steam is superheated to 300 C ';
print 'Enthalpy of steam: %2.2f kJ'%(H);
Vsup = (Tsup/Tsat)*Vg;
U = H-(P*100*Vsup);
print 'Internal Energy of steam: %2.2f kJ'%(U);
import math
# Variables
Ms = 5.; #in kg
P = 5.; #in bar
Tsup = 250.+273; #in K
Cps = 2.1; #in kJ/kg K
Tf = 30.; #in C
Cpw = 4.187; #in kJ/kg K
H1 = Cpw*Tf;
# Calculations
#At 5 bar pressure
Tsat = 151.9+273; #in K
Hg = 2748.7; #in kJ/kg
H2 = Hg+(Cps*(Tsup-Tsat));
Q = Ms*(H2-H1);
# Results
print 'Amount of heat required: %2.2f kJ'%(Q);
# Variables
Ms = 3.; #in kg
Tf = 30.; #in C
P = 8.; #in bar
Tsup = 210.+273; #in K
Cps = 2.1; #in kJ/kg K
Cpw = 4.186; #in kJ/kg K
# Calculations
H1 = Cpw*Tf;
#At 8 bar pressure
Tsat = 170.4+273; #in K
Hg = 2769.1; #in kJ/kg
H2 = Hg+(Cps*(Tsup-Tsat));
Q = Ms*(H2-H1);
# Results
print 'Amount of heat required: %2.2f kJ'%(Q);
# Variables
#At 7 bar pressure
P1 = 7.; #in bar
P2 = 1.; #in bar
n = 1.1;
#Now according to law of expansion P(V)**1.1 = Consmath.tant
# Calculations and Results
Vg1 = 0.273; #in m**3/kg
V1 = Vg1;
V2 = ((P1/P2)**(1./n))*V1;
W = ((P1*100*V1)-(P2*100*V2))/(n-1);
print 'Work Done: %3.1f kJ/kg'%(W);
Hg = 2763.5; #in kJ/kg
H1 = Hg;
Vg = 1.694;
#At 1 bar, Vg = 1.694 and as V2<Vg steam is wet
x = V2/Vg;
Hf = 417.5; #in kJ/kg
Hfg = 2258; #in kJ/kg
H2 = Hf+(x*Hfg);
U2 = H2-(P2*100*V2);
U1 = H1-(P1*100*V1);
U = U2-U1;
print 'Change in Internal Energy: %3.2f kJ/kg'%(U);
Q = U+W;
print 'Heat transferred during the process: %3.2f kJ/kg'%(Q);
# rounding off error.