# Variables
Mf = 1300.; #in kg
Ma = 13000.; #in kg
P = 7.; #in bar
Cpw = 4.187; #in kJ/kg K
CV = 30000.; #in kJ/kg
x = 0.95; #Dryness Fraction
Tfw = 40.; #in C
Hfw = Tfw*Cpw;
#At 7 bar
Hf = 697.2; #in kJ/kg
Hfg = 2066.3; #in kJ/kg
# Calculations and Results
H = Hf+(x*Hfg);
Ms = Ma/Mf;
Me = (Ms*(H-Hfw))/(2257);
print 'Equivalent evaporation: %3.2f kg/kg of coal'%(Me);
Eff = 100*(Ma*(H-Hfw))/(Mf*CV);
print 'Boiler Efficiency: %3.1f Percent'%(Eff);
# Variables
Ma = 5400.; #in kg/hr
Tfw = 42.; #in C
P = 7.6; #in bar
Mf = 670.; #in kg/hr
x = 0.98; #Dryness Fraction
CV = 31000.; #kJ/kg
Ms = Ma/Mf;
Hf = 175.81; #in kJ/kg
Hfw = Hf;
#Now at 7.6 bar pressure
Hf = 711.8; #in kJ/kg
Hfg = 2055.2; #in kJ/kg
# Calculations and Results
H = Hf+(x*Hfg);
Eff = 100*(Ma*(H-Hfw))/(Mf*CV);
print 'Boiler Efficiency %3.1f percent'%(Eff);
Me = (Ms*(H-Hfw))/(2257);
print 'Equivalent evaporation: %3.2f kg/kg of coal'%(Me);
# Variables
P = 12; #in bar
CV = 34000; #in kJ/kg
T = 250; #in C
Ms = 10; #in kg/kg of coal
Tfw = 36; #in C
Hfw = 150.74; #in kJ/kg
Hg = 2784.8; #in kJ/kg
Tsup = T;
Tsat = 188; #in C
Cps = 2.1; #in kJ/kg K
H = Hg+(Cps*(Tsup-Tsat));
# Calculations and Results
Me = (Ms*(H-Hfw))/2257;
print 'Equivalent evaporation: %3.2f kg/kg of coal'%(Me);
Eff = (Me*250)/21.296;
print 'Boiler Power: %3.2f kW'%(Eff);
# rounding off error.
# Variables
Ma = 35500; #kg of steam
Mf = 3460;
CV = 39500;
Ms = Ma/Mf;
Hfw2 = 313.9; #in kJ/kg
Hfw1 = 71.4; #in kJ/kg
Q = Ma*(Hfw2-Hfw1); #Heat added in economizer
H = 2915.0; #in kJ/kg
# Calculations and Results
Me = (Ms*(H-Hfw2))/2257;
print 'Equivalent evaporation: %3.2f kg/kg of Oil'%(Me);
Eff1 = (Ma*100*(H-Hfw2))/(Mf*CV);
print 'Thermal Efficiency of boiler: %3.1f Percent'%(Eff1);
Eff2 = (Ma*100*(H-Hfw1))/(Mf*CV);
print 'Thermal Efficiency of Boiler plant: %3.1f Percent'%(Eff2);
HU = 860875000/(Mf*CV);
print 'Heat Utilized by Economizer: %3.1f Percent'%(HU);
# rounding off error.
# Variables
Ma = 10000; #in kg/hr
P = 7; #in bar
Tfw = 40; #in C
Hfw = 167.6; #in kJ/kg
H = 2763.5; #in kJ/kg
# Calculations and Results
Q = Ma*(H-Hfw)/60; #Heat per minute
SA = Q/2720; #Heating surface area required
print 'Heating surface area required: %3.1f m**2'%(SA);
GA = SA/25;
print 'Grate area required: %3.1f m**2'%(GA);
# Variables
Ma = 2400; #in kg
Mf = 240; #in kg
P = 12; #in bar
CV = 33500; #in kJ/kg
Tfw = 120; #in C
Cpw = 4.187;
Hfw = Cpw*Tfw;
H = 2784.8; #in kJ/kg
Mfa = Mf-(0.1*Mf);
# Calculations and Results
Eff = (Ma*100*(H-Hfw))/(Mfa*CV);
print 'Thermal Efficiency: %3.1f percent'%(Eff);
Eff1 = (Ma*100*(H-Hfw))/(Mf*CV);
print 'Thermal Efficiency of boiler and grate: %3.1f percent'%(Eff1);
# Variables
Mf = 255; #in kg
x = 0.94; #Dryness Fraction
CV = 30100; #in kJ/kg
P = 11.5; #in bar
Ma = 2100; #in kg
Tfw = 25; #in C
Ms = Ma/Mf;
Hfw = 104.9; #in kJ/kg
Hf = 790.1; #in kJ/kg
Hfg = 1993.2; #in kJ/kg
H = Hf+(x*Hfg);
# Calculations and Results
Me = (Ms*(H-Hfw))/2257;
Eff = (Ma*100*(H-Hfw))/(Mf*CV);
print 'Equivalent Evaporation: %3.2f kg/kg of coal '%(Me)
print 'Thermal Efficiency: %3.1f percent'%(Eff);
# Variables
Hf = 762.8; #in kJ/kg
Hfg = 2015.3; #in kJ/kg
x = 0.95; #Dryness Fraction
Ma = 1000;
Eff = 0.75;
CV = 31000;
# Calculations
H = Hf+(x*Hfg);
Cpw = 4.187;
T = 50;
Hfw = Cpw*T;
Q = Ma*(H-Hfw);
Mf = Q/(Eff*CV);
y = Mf/0.9;
Eff1 = (Q*100)/(y*CV);
# Results
print 'Efficiency of Boiler and grate: %3.1f percent'%(Eff1);
# Variables
#At 10 bar
Hg = 2778.1; #in kJ/kg
Cp = 2.1; #in kJ/kg K
T = 50;
CV = 30000; #in kJ/kg
# Calculations and Results
H = Hg+(Cp*T);
C = 4.187;
Tf = 30;
Hfw = C*Tf;
Ms = 800./100;
Me = (Ms*(H-Hfw))/2257;
print 'Equivalent Evaporation: %3.2f kg/kg of coal'%(Me);
Eff = (Ms*100*(H-Hfw))/CV;
print 'Efficiency of Boiler and grate: %3.1f percent'%(Eff);
# Variables
#At 10 bar pressure
Tsat = 179.9;
Tsup = 250;
Cps = 2.1; #in kJ/kg K
Hg = 2778.1; #in kJ/kg
Ms = 10; #in kg/kg of coal
Hsup = Hg+(Cps*(Tsup-Tsat));
Hfw = 155;
Me = (Ms*(Hsup-Hfw))/2257;
# Calculations
FOE = Me/Ms; #Factor of Evaporation
BP = (Me*370)/21.296;
# Results
print 'Equivalent Evaporation: %3.1f kg/kg of coal'%(Me);
print 'Boiler Power: %3.1f kW'%(BP);
# Variables
Ma = 1100; #in kg/hr
CV = 33000; #in kJ/kg
Tfw = 46; #in C
P = 10; #in bar
x = 0.9; #Dryness Fraction
Eff = 0.81; #Efficiency
# Calculations
Hf = 762.8;
Hfg = 2015.3;
H = Hf+(x*Hfg);
Hfw = 192.6;
Mf = (Ma*(H-Hfw))/(CV*Eff);
# Results
print 'Amount of Coal Consumed per hour: %3.1f kg'%(Mf);
# Variables
Ms = 7.3; #kg/kg of fuel
Tfw = 46; #in C
P = 10; #in bar
FOE = 1.17; #Factor of Evaporation
Eff = 0.79;
# Calculations and Results
Me = FOE*Ms;
print 'Equivalent Evaporation: %3.2f kg/kg of coal'%(Me);
Hfw = 192.6; #in kJ/kg
Hg = 2778.1; #in kJ/kg
Tsat = 179.9; #in C
Cps = 2.1; #in kJ/kg K
H = (2257*FOE)+Hfw;
Tsup = ((H-Hg)/Cps)+Tsat;
print 'Temperature of Superheated Steam: %3.1f C'%(Tsup);
CV = (Ms*(H-Hfw))/Eff;
print 'Calorific Value: %3.1f kJ/kg'%(CV);
# Variables
Ma = 18000; #in kg/hr
P = 10; #in bar
x = 0.97; #Dryness Fraction
Tfw = 40; #in C
Mf = 2050; #in kg/hr
CV = 28000; #kJ/kg
#At 10 bar
Hf1 = 762.8;
Hfg1 = 2015.3;
H = Hf1+(x*Hfg1);
Hfw = 167.6;
# Calculations and Results
Eff = (Ma*100*(H-Hfw))/(Mf*CV);
print 'Boiler efficiency: %3.2f Percent'%(Eff);
EA = ((Ma/Mf)*(H-Hfw))/2257;
print 'Equivalent Evaporation: %3.2f kg/kg of coal'%(EA);
# rounding off error.
# Variables
Ma = 18000; #in kg/hr
P = 12; #in bar
x = 0.97; #Dryness Fraction
CV = 27400; #in kJ/kg
Mf = 2050; #in kg>hr
# Calculations and Results
Qs = Mf*CV;
print 'Heat Supplied per hour: %3.1f kJ/hr'%(Qs);
#At 12 bar
Hf = 798.6; #in kJ/kg
Hfg = 1986.2; #in kJ/kg
H1 = Hf+(x*Hfg);
#At 105 C
Hfw = 438.9; #in kJ/kg
Eff = (Ma*100*(H1-Hfw))/Qs;
print 'Thermal Efficiency: %3.2f Percent'%(Eff);
Ms = Ma/Mf;
print 'Factor of Evaporation: %3.2f kg of steam '%(Ms);
# Variables
Ms = 7.5; #kg/kg of coal
P = 11; #in bar
Tf = 70; #in C
Eff = 0.75; #Efficiency
FOE = 1.15; #Factor of Evaporation
Cps = 2.1; #in kJ/kg K
Hfw = 293; #in kJ/kg
H = (FOE*2257)+Hfw;
# Calculations and Results
#At 11 bar
Hg = 2781.7; #in kJ/kg
Tsat = 184.1; #in C
Tsup = ((H-Hg)/Cps)+Tsat;
DOS = Tsup-Tsat; #Degree of Superheat
print 'Degree of Superheat: %3.1f C'%(DOS);
Me = (Ms*(H-Hfw))/2257;
print 'Equivalent evaporation: %3.2f kg/kg of coal'%(Me);
CV = (Ms*(H-Hfw))/Eff;
print 'Calorific value of Boiler: %3.2f kJ/kg '%(CV);
# Variables
Ma = 17000; #in kg/hr
P = 14; #in bar
x = 0.95; #Dryness Fraction
Tfw = 102; #in C
Mf = 2050; #in kg/hr
CV = 27400; #Calorific Value
# Calculations and Results
HS = Mf*CV;
print 'Heat Supplied per hour: %3.2f kJ'%(HS);
Hf = 830.3; #in kJ/kg
Hfg = 1959.7; #in kJ/kg
Hfw = 427.5; #in kJ/kg
H = Hf+(x*Hfg);
Eff = (Ma*100*(H-Hfw))/(Mf*CV);
print 'Efficiency of Boiler: %3.2f Percent'%(Eff);
Ms = Ma/Mf;
Me = (Ms*(H-Hfw))/2257;
print 'Equivalent evaporation: %3.2f kg/kg of coal'%(Me);
# Variables
Ma = 1800; #kg/hr
P = 12; #in bar
x = 0.97; #Dryness Fraction
Tfw = 105; #in C
Mf = 2050; #in kg/hr
CV = 27400; #in kJ/kg
# Calculations and Results
Q = Mf*CV;
print 'Heat Supplied: %3.2f kJ'%(Q);
#At 12 bar pressure
Hf = 798.6; #in kJ/kg
Hfg = 1986.2; #in kJ/kg
H = Hf+(x*Hfg);
Hfw = 4.187*Tfw;
Me = (Ma*(H-Hfw))/(2257*Mf);
print 'Equivalent Evaporation: %3.2f kg/kg of coal'%(Me);
Eff = (Ma*100*(H-Hfw))/(CV*Mf);
print 'Efficiency of boiler: %3.2f Percent'%(Eff);
# Variables
Me = 10; #kg/kg
CV = 34000. #kJ/kg
# Calculations
x = Me*2257;
Eff = 100*x/CV;
# Results
print 'Efficiency of Boiler: %3.2f Percent'%(Eff);
# Variables
Ma = 5500; #kg/hr
P = 1; #bar
x = 0.94; #Dryness Fraction
Tfw = 40; #in C
Mf = 600; #kg/hr
CV = 32000; #kJ/kg
Hfw = Tfw*4.187;
#At 1 bar pressure
Hf = 417.5; #kJ/kg
Hfg = 2258; #kJ/kg
H = Hf+(x*Hfg);
Ms = Ma/Mf;
# Calculations and Results
Me = (Ms*(H-Hfw))/2257;
print 'Equivalent Evaporation: %3.3f kg/kg of coal'%(Me);
Eff = (Ms*100*(H-Hfw))/CV;
print 'Efficiency: %3.2f percent'%(Eff);
# rounding off error.