Chapter 8 - ELECTROSTATIC AND ELECTROMAGNETIC INTERFERENCE WITH COMMUNICATION LINES

Example E1 - Pg 203

In [1]:
#calculate Voltage induced per Km in the line in Volt
import math
#Given data :
f=50.##Hz
hor_con=1.2##horizontal configuration spacing in m
x=0.85##telephone line location below power line in meter
I=120.##current in power line in A
d=0.4##spacing between conductors in meter
dAD=math.sqrt(x**2.+((hor_con+d)/2.)**2.)##m
dAC=math.sqrt(x**2.+((hor_con-d)/2.)**2.)##m
dBD=dAC##m
dBC=dAD##m
M=d*math.log(math.sqrt(dAD*dBC/dAC/dBD))##mh/km
Vm=2*math.pi*f*M*10.**-3*I##V
print '%s %.3f' %("Voltage induced per Km in the line in Volt :",Vm)#
Voltage induced per Km in the line in Volt : 3.275

Example E2 - Pg 205

In [2]:
#calculate 
import math
#Given data :
f=50.##HzdAP=AO+5##m
l=200.##km
V=132.*1000.##V
Load=28000.##kW
pf=0.85##lagging power factor
r=5./1000.##radius of conductor in m
#From the figure given in question
AO=math.sqrt(4.**2.-2.**2.)##m
dAP=AO+5.##m
dAQ=dAP+1.##m
dBP=math.sqrt(5.**2.+2.**2.)##m
dBQ=math.sqrt(6.**2.+2.**2.)##m
MA=0.2*math.log(dAQ/dAP)##mH/km
MB=0.2*math.log(dBQ/dBP)##mH/km
MC=MB##mH/km
M=MB-MA##mH/km(MA,MB and Mc are print '%s %.2f' %laced by 120 degree)
I=Load*1000./math.sqrt(3.)/V/pf##A
Vm=2.*math.pi*f*M*10.**-3.*I##V/km
Vm1=Vm*l##V(For whole route)
print '%s %.1f' %("Induced Voltage(For whole route) in Volts : ",Vm1)#
VA=V/math.sqrt(3.)##V
VB=V/math.sqrt(3.)##V
hA=20.+AO##m
VPA=VA*math.log((2.*hA-dAP)/dAP)/math.log((2.*hA-r)/r)##V
VPB=VB*math.log((2.*hA-dBP)/dBP)/math.log((2.*hA-r)/r)##V
VPC=VPB##V
VP=VPB-VPA##V
print '%s %.f' %("Potential of telephone conductor in Volts :",VP)#
#Answer in the book is wrong due to little accuracy as compared to scilab.
Induced Voltage(For whole route) in Volts :  88.9
Potential of telephone conductor in Volts : 4409