#If 3 mol carbon are completely burned in a process, determine
#(a) the number of moles of O2 required and
#(b) the mass of O2 required
#initialisation of variables
n= 3 #lbm mol
Mo2= 32 #lbm/lbm mol
#CALCULATIONS
m= n*Mo2 #Mass of O2 required
#RESULTS
print '%s %.2f' % ('Mass of O2 required (lbm) = ',m)
raw_input('press enter key to exit')
#Determine the air-fuel ratio on a gram-molal and a mass basis if octane is
#completely burned in the presence of theoretical air
#initialisation of variables
n= 12.5 #mol
n1= 3.76 #mol
M= 114 #gm/gm mol
M1= 28.96 #gm/gm mol
#CALCULATIONS
n2= n*(1+n1) #Moles
m= n2*M1/M #Air-fuel ratio
#RESULTS
print '%s %.2f' % ('Air-fuel ratio (gm air/gm fuel) = ',m)
raw_input('press enter key to exit')
#Develop the stoichiometric equation that expresses the process of octane
#being burned with 150% theoretical air. What is the air-fuel ratio on a
#kilogram molal basis?
#initialisation of variables
p= 150
nO2= 12.5 #mol
n1= 3.76
#CALCULATIONS
n2= (nO2*(p/100.))+(nO2*n1*(p/100.)) #ir-fuel ratio
#RESULTS
print '%s %.2f' % ('Air-fuel ratio (kg mol air/kg mol fuel) = ',n2)
raw_input('press enter key to exit')
#Benzene is used in a heating process that is 65% efficient. How much benzene
#is required to heat 185 liter tank of water from 10 to 30C?
#initialisation of variables
P= 65
T= 30 #C
T1= 10 #C
c= 4.19 #J/gm C
h= 41961
m= 185 #lt
#CALCULATIONS
Q= m*1000*c*(T-T1) #Heat required
M= (Q*100.)/(h*P) #Mass of benzene required
#RESULTS
print '%s %.2f' % ('Benzene required (gm) = ',M)
raw_input('press enter key to exit')