#If a blackbody is maintained at 116C, determine (a) the wavelength at which
#the maximum monochromatic emissive power occurs and (b) the maximum
#monochromatic emissive power
import math
#initialisation of variables
T= 116. #C
C1= 3.74*math.pow(10,-16)
C2= 1.44*math.pow(10,-2)
#CALCULATIONS
WLmax= (2893*math.pow(10,-6))/(T+273) #Maximum Wavelength
Wb= (C1*math.pow((WLmax),(-5)))/(math.exp(C2/2893*1000000.)-1) #Coffecient of performnance
#RESULTS
print '%s %.2e' % ('Wavelength at which the maximum monochromatic emissive power (m) = ',WLmax)
print '%s %.2e' % (' \n Coffecient of performnance (W/m^3) = ',Wb)
raw_input('press enter key to exit')
#Determine the total emissive power for the black body of solved problem 2
import math
#initialisation of variables
T= 389 #K
s= 5.7*math.pow(10,-8) #K^4
#CALCULATIONS
Wb= s*T*T*T*T #Emissive power for the blackbody
#RESULTS
print '%s %.2f' % ('Emissive power for the blackbody (W/m^2) = ',Wb)
raw_input('press enter key to exit')
#A gray body at 100F receives radiant energy from a wall at 2000 F at a rate
#of 3.2x 10^4. Simultaneously, the body emits energy at the rate of 140. What
#is the average absorptivity of the body at (a) 100 F and (b) 2000 F
import math
#initialisation of variables
T= 100 #F
T1= 2000 #F
W= 3.2*10000. #Btu/hr ft^2
W1= 140. #Btu/hr ft^2
s= 0.17*math.pow(10,-8) #Btu/hr ft^2 R^4
#CALCULATIONS
alpha= W/(s*math.pow((T1+460),4)) #Average absorptivity at 100
b= W1/(s*math.pow((T+460),4)) #Average absorptivity at 2000
#RESULTS
print '%s %.2f' % ('Average absorptivity of the body at 100 F = ',alpha)
print '%s %.2f' % (' \n Average absorptivity of the body at 2000 F= ',b)
raw_input('press enter key to exit')
#A red brick conduit 10 in square has a surface temperature of 300F and is
#mounted inside a large earthen chamber whose walls are at 50 F. estimate
#the heat loss from the conduit by radiation
import math
#initialisation of variables
T= 300. #F
T1= 50. #F
s= 0.17*math.pow(10,-8) #Btu/hr ft^2 R^4
e1= 0.93
A= 10. #in
F= 1.
#CALCULATIONS
A1= 10*(40./(12.*10.)) #Area
q= A1*F*e1*s*(math.pow((T+460),4)-math.pow((T1+460),4)) #heat loss
#RESULTS
print '%s %.2f' % ('Heat loss from the conduit by radiation (Btu/hr per ft) = ',q)
raw_input('press enter key to exit')
#Estimate the radiation heat transfer coefficient for solved problem 5
import math
#initialisation of variables
T= 300. #F
T1= 50. #F
s= 0.17*math.pow(10,-8) #Btu/hr ft^2 R^4
e1= 0.93
F= 1.
#CALCULATIONS
hr= F*e1*s*(math.pow((T+460),4)-math.pow((T1+460),4))/(T-T1) #Radiation heat transfer coefficient
#RESULTS
print '%s %.2f' % ('Radiation heat transfer coefficient (Btu/hr ft^2 R) = ',hr)
raw_input('press enter key to exit')
import math
#initialisation of variables
P= 1. #atm
T= 11. #C
Csf= 0.006
Tsat = 170.03
r= 1./3.
s= 1.
dt = Tsat - T
cl= 4.218 #J/gm K
hfg= 2257 #J/gm
Pr= 1.75
ul= 283.1/1000. #gm/m s
s= 57.78/1000. #N/m
pl= 958*1000. #gm/m^3
pv= 598. #gm/m^3
gc= 1000. #gm m/N s^2
g= 9.8 #m/s^2
#CALCULATIONS
p= pl-pv
q= ((math.pow(((cl*dt)/(hfg*Csf*math.pow(Pr,s))),(1/r)))*(ul*hfg))/math.pow(gc/(g*p),(1./2.))
h= q/T
#RESULTS
print '%s %.2e' % ('Heat transfer coefficient for nucleate boiling (W/m^2 C) = ',h)
raw_input('press enter key to exit')