#Determine the specific volume for steam of 60% quality at 425 F using
#(a) Eq 1.3 (b) 1.4 (c) 1.5
import math
#initialisation of variables
Vf= 0.019014 #ft^3/lbm
Vg= 1.4249 #ft^3/lbm
T= 425. #fahrenheit
quality= 60. #%
#CALCULATIONS
Vfg= Vg-Vf #Specific volume
V= (quality/100.)*Vg+(1-(quality/100.))*Vf #Volume using 1.3
V1= Vf+(quality/100.)*Vfg #Volume using 1.4
V2= Vg-(1-(quality/100.))*Vfg #Volume using 1.5
#RESULTS
print '%s %.4f' % ('Vfg (ft^3/lbm) = ',Vfg)
print '%s %.4f' % (' \n V (ft^3/lbm) = ',V)
print '%s %.4f' % (' \n V (ft^3/lbm) = ',V1)
print '%s %.4f' % (' \n V (ft^3/lbm) = ',V2)
raw_input('press enter key to exit')
#Saturated steam at 350 lbf/in^2 is heated to 500F. sketch a temperature-
#-volume vapor dome and show the specific volume , temperature and pressure
#for the saturated and superheated states
#initialization of variables
tsat=431.82 #F
vf=0.019124 #ft^3/lbm
vg=1.3267 #ft^3/lbm
#Calculations
print '%s' %('From keenan and keyes steam tables, at 500 f and 350 psia,')
v=1.4913 #ft^3/lbm
#Results
print '%s %.4f' %('\n Specific volume (ft^3/lbm) = ',v)
raw_input('press enter key to exit')
#If saturated liquid steam at 100C has its pressure increased to 200 bar
#while the temperature remains constant, determine how much the liquid
#is compressed.
import math
#initialisation of variables
T= 100. #degrees
P= 200. #bar
#CALCULATIONS
print '%s' %('From keenan and keyes steam tables')
Psat= 1.0135 #bar
Vf= 1.0435 #cm^3/gm
V= 1.0337 #cm^3/gm
v= Vf-V #Amount of compressed
#RESULTS
print '%s %.4f' % ('Amount of liquid compressed (cm^3/gm) = ',v)
raw_input('press enter key to exit')