from __future__ import division
# Initilization of variables
b1=20 #cm # width of top flange
t1=5 #cm # thickness of top flange
b2=5 #cm # width of web
t2=15 #cm # thickness or height of the web
b3=30 #cm # width of bottom flange
t3=5 #cm # thickness of bottom flange
# Calculations
A1=b1*t1 #cm**2 # area of bottom flange
A2=b2*t2 #cm**2 # area of the web
A3=b3*t3 #cm**2 # area of top flange
y1=t3+t2+(t1/2) #cm # y co-ordinate of the centroid of top flange
y2=t3+(t2/2) #cm # y co-ordinate of the centroid of the web
y3=t3/2 #cm # y co-ordinate of the centroid of the bottom flange
y_c=((A1*y1)+(A2*y2)+(A3*y3))/(A1+A2+A3) #cm # where y_c is the centroid of the un-symmetrical I-section
# Results
print('The centroid of the un equal I-section is %f cm \n'%y_c)
from __future__ import division
# Initilization of variables
# The given section is Z-section which is un-symmetrycal about both the axis
b1=20 #cm # width of bottom flange
t1=5 #cm # thickness of the bottom flange
b2=2.5 #cm # thickness of the web of the flange
t2=15 #cm # depth of the web
b3=10 #cm # width of the top flange
t3=2.5 #cm # thickness of the top flange
# Calculations
# Respective areas
A1=b1*t1 # cm**2 # area of the bottom flange
A2=b2*t2 # cm**2 # area of the web
A3=b3*t3 # cm**2 # area of the top-flange
# first we calculate the x co-ordinate of the centroid
x1=b3-b2+(b1/2) #cm # for the bottom flange
x2=b3-(b2/2) #cm # for the web
x3=b3/2 #cm # for the top flange
x_c=((A1*x1)+(A2*x2)+(A3*x3))/(A1+A2+A3) #cm
# secondly we calculate the y co-ordinate of the centroid
y1=t1/2 #cm # for the bottom flange
y2=t1+(t2/2) #cm # for the web
y3=t1+t2+(t3/2) #cm # for the top flange
y_c=((A1*y1)+(A2*y2)+(A3*y3))/(A1+A2+A3) # cm
# Results
print('The centroid of the cross-sectional area of a Z-section about x-axis is %f cm \n'%x_c)
print('The centroid of the cross-sectional area of a Z-section about y-axis is %f cm \n'%y_c)