#importing modules
import math
#Variable declaration
epsilon_0 = 8.85*10**-12; #Absolute electrical permittivity of free space(F/m)
R = 0.52; #Radius of hydrogen atom(A)
n = 9.7*10**26; #Number density of hydrogen(per metre cube)
#Calculation
R = R*10**-10; #Radius of hydrogen atom(m)
alpha_e = 4*math.pi*epsilon_0*R**3; #Electronic polarizability of hydrogen atom(Fm**2)
#Result
print "The electronic polarizability of hydrogen atom is", alpha_e, "Fm**2"
#importing modules
import math
from __future__ import division
#Variable declaration
epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)
A = 100; #Area of a plate of parallel plate capacitor(cm**2)
d = 1; #Distance between the plates of the capacitor(cm)
V = 100; #Potential applied to the plates of the capacitor(V)
#Calculation
A= A*10**-4; #Area of a plate of parallel plate capacitor(m**2)
d = d*10**-2; #Distance between the plates of the capacitor(m)
C = epsilon_0*A/d; #Capacitance of parallel plate capacitor(F)
Q = C*V; #Charge on the plates of the capacitor(C)
#Result
print "The capacitance of parallel plate capacitor is",C, "F"
print "The charge on the plates of the capacitor is",Q, "C"
#importing modules
import math
from __future__ import division
#Variable declaration
epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)
epsilon_r = 5.0; #Dielectric constant of the material between the plates of capacitor
V = 15; #Potential difference applied between the plates of the capacitor(V)
d = 1.5; #Separation between the plates of the capacitor(mm)
#Calculation
d = d*10**-3; #Separation between the plates of the capacitor(m)
#Electric displacement, D = epsilon_0*epsilon_r*E, as E = V/d, so
D = epsilon_0*epsilon_r*V/d; #Dielectric displacement(C/m**2)
#Result
print "The dielectric displacement is",D, "C/m**2"
#importing modules
import math
from __future__ import division
#Variable declaration
epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)
N = 3*10**28; #Number density of solid elemental dielectric(atoms/metre cube)
alpha_e = 10**-40; #Electronic polarizability(Fm**2)
#Calculation
epsilon_r = 1 + (N*alpha_e/epsilon_0); #Relative dielectric constant of the material
epsilon_r = math.ceil(epsilon_r*10**3)/10**3; #rounding off the value of epsilon_r to 3 decimals
#Result
print "The Relative dielectric constant of the material is",epsilon_r
#importing modules
import math
from __future__ import division
#Variable declaration
N_A = 6.02*10**23; #Avogadro's number(per mole)
epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)
epsilon_r = 3.75; #Relative dielectric constant
d = 2050; #Density of sulphur(kg/metre cube)
y = 1/3; #Internal field constant
M = 32; #Atomic weight of sulphur(g/mol)
#Calculation
N = N_A*10**3*d/M; #Number density of atoms of sulphur(per metre cube)
#Lorentz relation for local fields give E_local = E + P/(3*epsilon_0) which gives
#(epsilon_r - 1)/(epsilon_r + 2) = N*alpha_e/(3*epsilon_0), solving for alpha_e
alpha_e = (epsilon_r - 1)/(epsilon_r + 2)*3*epsilon_0/N; #Electronic polarizability of sulphur(Fm**2)
#Result
print "The electronic polarizability of sulphur is",alpha_e, "Fm**2"
#importing modules
import math
from __future__ import division
#Variable declaration
N = 3*10**28; #Number density of atoms of dielectric material(per metre cube)
epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)
n = 1.6; #Refractive index of dielectric material
#Calculation
#As (n^2 - 1)/(n^2 + 2) = N*alpha_e/(3*epsilon_0), solving for alpha_e
alpha_e = (n**2 - 1)/(n**2 + 2)*3*epsilon_0/N; #Electronic polarizability of dielectric material(Fm**2)
#Result
print "The electronic polarizability of dielectric material is",alpha_e, "Fm**2"
#importing modules
import math
from __future__ import division
#Variable declaration
epsilon_r = 4.9; #Absolute relative dielectric constant of material(F/m)
n = 1.6; #Refractive index of dielectric material
#Calculation
#As (n^2 - 1)/(n^2 + 2)*(alpha_e + alpha_i)/alpha_e = N*(alpha_e + alpha_i)/(3*epsilon_0) = (epsilon_r - 1)/(epsilon_r + 2)
#let alpha_ratio = alpha_i/alpha_e
alpha_ratio = ((epsilon_r - 1)/(epsilon_r + 2)*(n**2 + 2)/(n**2 - 1) - 1)**(-1); #Ratio of electronic polarizability to ionic polarizability
alpha_ratio = math.ceil(alpha_ratio*10**3)/10**3; #rounding off the value of alpha_ratio to 3 decimals
#Result
print "The ratio of electronic polarizability to ionic polarizability is",alpha_ratio