#importing modules
import math
from __future__ import division
#Variable declaration
N = 6.02*10**23; #Avogadro's number(per mole)
A = 56; #Atomic weight of the substance(g/mole)
d = 7.9; #Density of the substance(g/cm**3)
m_B = 9.27*10**-24; #Bohr's Magneton(J/T)
#Calculation
m = 2.2*m_B; #Magnetic moment of substance(J/T)
n = d*N/A ; #Number of atoms per unit volume of the substance(per cm**3)
n = n*10**6; #Number of atoms per unit volume of the substance(per m**3)
M = n*m; #Spontaneous magnetisation of the substance(A/m)
M = M/10**6;
M = math.ceil(M*10**3)/10**3; #rounding off the value of M to 3 decimals
#Result
print "The spontaneous magnetisation of the substance is",M,"*10**6 A/m"
#importing modules
import math
from __future__ import division
#Variable declaration
H = 200; #Field strength to which the ferromagnetic material is subjected(A/m)
M = 3100; #Magnetisation of the ferromagnetic material(A/m)
#Calculation
chi = M/H; #Magnetic susceptibility
mew_r = 1 + chi; #Relative permeability of ferromagnetic material
#Result
print "The relative permeability of ferromagnetic material is",mew_r
#importing modules
import math
from __future__ import division
#Variable declaration
H = 300; #Field strength to which the ferromagnetic material is subjected(A/m)
M = 4400; #Magnetisation of the ferromagnetic material(A/m)
#Calculation
chi = M/H; #Magnetic susceptibility
mew_r = 1 + chi; #Relative permeability of ferromagnetic material
mew_r = math.ceil(mew_r*100)/100; #rounding off the value of mew_r to 2 decimals
#Result
print "The relative permeability of ferromagnetic material is",mew_r
#importing modules
import math
#Variable declaration
mew_0 = 4*math.pi*10**-7; #Magnetic permeability of free space(Tm/A)
H = 10000; #Field strength to which the diamagnetic material is subjected(A/m)
chi = -0.4*10**-5; #Magnetic susceptibility
#Calculation
M = chi*H; #Magnetisation of the diamagnetic material(A/m)
B = mew_0*(H + M); #Magnetic flux density of diamagnetic material(T)
B = math.ceil(B*10**4)/10**4; #rounding off the value of B to 4 decimals
#Result
print "The magnetisation of diamagnetic material is",M, "A/m"
print "The magnetic flux density of diamagnetic material is",B, "T"
#importing modules
import math
from __future__ import division
#Variable declaration
mew_0 = 4*math.pi*10**-7; #Magnetic permeability of free space(Tm/A)
H = 1.2*10**5; #Field strength to which the diamagnetic material is subjected(A/m)
chi = -4.2*10**-6; #Magnetic susceptibility
#Calculation
M = chi*H; #Magnetisation of the diamagnetic material(A/m)
B = mew_0*(H + M); #Magnetic flux density of diamagnetic material(T)
B = math.ceil(B*10**3)/10**3; #rounding off the value of B to 3 decimals
mew_r = M/H + 1; #The relative permeability of diamagnetic material
mew_r = math.ceil(mew_r*10**6)/10**6; #rounding off the value of mew_r to 6 decimals
#Result
print "The magnetisation of diamagnetic material is",M, "A/m"
print "The magnetic flux density of diamagnetic material is",B, "T"
print "The relative permeability of diamagnetic material is",mew_r
#importing modules
import math
from __future__ import division
#Variable declaration
chi = 5.6*10**-6; #Magnetic susceptibility of diamagnetic material
m = 9.1*10**-31; #Mass of an electron(kg)
mew_0 = 4*math.pi*10**-7; #Magnetic permeability of free space(Tm/A)
Z = 1; #Atomic number
e = 1.6*10**-19; #Electronic charge(C)
a = 2.53; #Lattice parameter of bcc structure(A)
#Calculation
a = a*10**-10; #Lattice parameter of bcc structure(m)
N = 2/a**3; #The number of electrons per unit volume(per metre cube)
r = math.sqrt(chi*6*m/(mew_0*Z*e**2*N)); #Mean radius of body centered cubic structure(m)
r = r*10**10; #Mean radius of body centered cubic structure(A)
r = math.ceil(r*100)/100; #rounding off the value of r to 2 decimals
#Result
print "The mean radius of body centered cubic structure is",r, "A"
#importing modules
import math
from __future__ import division
#Variable declaration
mew_0 = 4*math.pi*10**-7; #Magnetic permeability of free space(Tm/A)
N_A = 6.02*10**26; #Avogadro's number(per kmol)
rho = 4370; #Density of paramegnetic salt(kg/metre cube)
M = 168.5; #Molecular weight of paramagnetic salt(g/mol)
T = 27; #Temperature of paramagnetic salt(C)
H = 2*10**5; #Field strength to which the paramagnetic salt is subjected(A/m)
mew_B = 9.27*10**-24; #Bohr's magneton(Am**2)
p = 2; #Number of Bohr magnetons per molecule
k = 1.38*10**-23; #Boltzmann constant(J/K)
#Calculation
T = T+273; #Temperature of paramagnetic salt(K)
N = rho*N_A/M; #Total density of atoms in the paramagnetic salt(per meter cube)
chi_para = mew_0*N*p**2*mew_B**2/(3*k*T); #Magnetic susceptibility of paramagnetic salt
chi_para = chi_para*10**4;
chi_para = math.ceil(chi_para*10**2)/10**2; #rounding off the value of chi_para to 2 decimals
M = chi*H; #Magnetisation of paramagnetic salt(A/m)
M = math.ceil(M*10)/10; #rounding off the value of M to 1 decimal
#Result
print "The magnetic susceptibility of paramagnetic salt is",chi_para,"*10**-4"
print "The magnetisation of paramagnetic salt is",M, "A/m"
#answer for magnetisation is not given in the textbook