#importing modules
import math
from __future__ import division
#Variable declaration
k = 1.38*10**-23; #Boltzmann constant(J/K)
h = 6.626*10**-34; #Planck's constant(Js)
f_D = 64*10**11; #Debye frequency for Al(Hz)
#Calculation
theta_D = h*f_D/k; #Debye temperature(K)
theta_D = math.ceil(theta_D*10)/10; #rounding off the value of theta_D to 1 decimal
#Result
print "The Debye temperature of aluminium is",theta_D, "K"
#importing modules
import math
from __future__ import division
#Variable declaration
N = 6.02*10**26; #Avogadro's number(per kmol)
k = 1.38*10**-23; #Boltzmann constant(J/K)
h = 6.626*10**-34; #Planck's constant(Js)
f_D = 40.5*10**12; #Debye frequency for Al(Hz)
T = 30; #Temperature of carbon(Ks)
#Calculation
theta_D = h*f_D/k; #Debye temperature(K)
C_l = 12/5*math.pi**4*N*k*(T/theta_D)**3; #Lattice specific heat of carbon(J/k-mol/K)
C_l = math.ceil(C_l*10**3)/10**3; #rounding off the value of C_l to 3 decimals
#Result
print "The lattice specific heat of carbon is",C_l, "J/k-mol/K"
#answer given in the book is wrong in the 2nd decimal
#importing modules
import math
from __future__ import division
#Variable declaration
k = 1.38*10**-23; #Boltzmann constant(J/K)
h = 6.626*10**-34; #Planck's constant(Js)
theta_E = 1990; #Einstein temperature of Cu(K)
#Calculation
f_E = k*theta_E/h; #Einstein frequency for Cu(K)
#Result
print "The Einstein frequency for Cu is",f_E, "Hz"
print "The frequency falls in the near infrared region"
#importing modules
import math
from __future__ import division
#Variable declaration
e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)
N = 6.02*10**23; #Avogadro's number(per mol)
T = 0.05; #Temperature of Cu(K)
E_F = 7; #Fermi energy of Cu(eV)
k = 1.38*10**-23; #Boltzmann constant(J/K)
h = 6.626*10**-34; #Planck's constant(Js)
theta_D = 348; #Debye temperature of Cu(K)
#Calculation
C_e = math.pi**2*N*k**2*T/(2*E_F*e); #Electronic heat capacity of Cu(J/mol/K)
C_V = (12/5)*math.pi**4*(N*k)*(T/theta_D)**3; #Lattice heat capacity of Cu(J/mol/K)
#Result
print "The electronic heat capacity of Cu is",C_e, "J/mol/K"
print "The lattice heat capacity of Cu is",C_V, "J/mol/K"
#answer for lattice heat capacity given in the book is wrong
#importing modules
import math
from __future__ import division
#Variable declaration
T = 1; #For simplicity assume temperature to be unity(K)
R = 1; #For simplicity assume molar gas constant to be unity(J/mol/K)
theta_E = T; #Einstein temperature(K)
#Calculation
C_V = 3*R*(theta_E/T)**2*math.exp(theta_E/T)/(math.exp(theta_E/T)-1)**2; #Einstein lattice specific heat(J/mol/K)
C_V = C_V/3;
C_V = math.ceil(C_V*10**3)/10**3; #rounding off the value of C_V to 3 decimals
#Result
print "The Einstein lattice specific heat is",C_V, "X 3R"
#importing modules
import math
from __future__ import division
#Variable declaration
e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)
v = 2; #Valency of Zn atom
N = v*6.02*10**23; #Avogadro's number(per mol)
T = 300; #Temperature of Zn(K)
E_F = 9.38; #Fermi energy of Zn(eV)
k = 1.38*10**-23; #Boltzmann constant(J/K)
h = 6.626*10**-34; #Planck's constant(Js)
#Calculation
N = v*6.02*10**23; #Avogadro's number(per mol)
C_e = math.pi**2*N*k**2*T/(2*E_F*e); #Electronic heat capacity of Zn(J/mol/K)
C_e = math.ceil(C_e*10**4)/10**4; #rounding off the value of C_e to 4 decimals
#Result
print "The molar electronic heat capacity of zinc is",C_e, "J/mol/K"