#importing modules
import math
from __future__ import division
#Variable declaration
V = 100; #Accelerating potential for electron(volt)
#Calculation
lamda = math.sqrt(150/V)*10**-10; #de-Broglie wavelength of electron(m)
#Result
print "The De-Broglie wavelength of electron is",lamda, "m"
#importing modules
import math
from __future__ import division
#Variable declaration
e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)
h = 6.626*10**-34; #Planck's constant(Js)
m = 9.11*10**-31; #Mass of the electron(kg)
Ek = 10; #Kinetic energy of electron(eV)
#Calculation
p = math.sqrt(2*m*Ek*e); #Momentum of the electron(kg-m/s)
lamda = h/p ; #de-Broglie wavelength of electron from De-Broglie relation(m)
lamda = lamda*10**9; #de-Broglie wavelength of electron from De-Broglie relation(nm)
lamda = math.ceil(lamda*10**2)/10**2; #rounding off the value of lamda to 2 decimals
#Result
print "The de-Broglie wavelength of electron is",lamda, "nm"
#importing modules
import math
from __future__ import division
#Variable declaration
h = 6.626*10**-34; #Planck's constant(Js)
m = 9.11*10**-31; #Mass of the electron(kg)
v = 1.1*10**6; #Speed of the electron(m/s)
pr = 0.1; #precision in percent
#Calculation
p = m*v; #Momentum of the electron(kg-m/s)
dp = pr/100*p; #Uncertainty in momentum(kg-m/s)
h_bar = h/(2*math.pi); #Reduced Planck's constant(Js)
dx = h_bar/(2*dp); #Uncertainty in position(m)
#Result
print "The uncertainty in position of electron is",dx, "m"
#importing modules
import math
from __future__ import division
#Variable declaration
e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)
h = 6.626*10**-34; #Planck's constant(Js)
dt = 10**-8; #Uncertainty in time(s)
#Calculation
h_bar = h/(2*math.pi); #Reduced Planck's constant(Js)
dE = h_bar/(2*dt*e); #Uncertainty in energy of the excited state(m)
#Result
print "The uncertainty in energy of the excited state is",dE, "eV"
#answer given in the book is wrong
#importing modules
import math
from __future__ import division
#Variable declaration
c = 3*10**8; #Speed of light(m/s)
dt = 10**-8; #Average lifetime(s)
lamda = 400; #Wavelength of spectral line(nm)
#Calculation
lamda = lamda*10**-9; #Wavelength of spectral line(m)
#From Heisenberg uncertainty principle,
#dE = h_bar/(2*dt) and also dE = h*c/lambda^2*d_lambda, which give
#h_bar/(2*dt) = h*c/lambda^2*d_lambda, solving for d_lambda
d_lamda = (lamda**2)/(4*math.pi*c*dt); #Width of spectral line(m)
#Result
print "The width of spectral line is",d_lamda, "m"
#importing modules
import math
from __future__ import division
from scipy.integrate import quad
#Variable declaration
a = 2*10**-10; # Width of 1D box(m)
x1=0; # Position of first extreme of the box(m)
x2=1*10**-10; # Position of second extreme of the box(m)
#Calculation
def intg(x):
return ((2/a)*(math.sin(2*math.pi*x/a))**2)
S=quad(intg,x1,x2)[0]
#Result
print "The probability of finding the electron between x = 0 and x = 10**-10 is",S