#importing modules
import math
#Variable declaration
epsilon_0=8.854*10**-12;
A=10*10*10**-6; #area of capacitor in m^2
d=2*10**-3; #distance of seperation in m
C=10**-9; #capacitance in F
#Calculation
epsilon_r=(C*d)/(epsilon_0*A);
epsilon_r=math.ceil(epsilon_r*10**2)/10**2; #rounding off to 2 decimals
#Result
print("dielectric constant of material is",epsilon_r);
#Variable declaration
epsilon_0=8.854*10**-12;
epsilon_r=1.0000684; #dielectric constant of He gas
N=2.7*10**25; #concentration of dipoles per m^3
#Calculation
#alpha_e=P/(N*E) and P=epsilon_0(epsilon_r-1)*E
#therefore alpha_e=epsilon_0(epsilon_r-1)/N
alpha_e=(epsilon_0*(epsilon_r-1))/N;
#Result
print("electronic polarizability of He gas in Fm^2 is",alpha_e);
#Variable declaration
epsilon_0=8.854*10**-12;
epsilon_r=6; #dielectric constant
E=100; #electric field intensity in V/m
#Calculation
P=epsilon_0*(epsilon_r-1)*E;
#Result
print("polarization in C/m^2 is",P);
#importing modules
import math
#Variable declaration
epsilon_0=8.854*10**-12;
R=0.158; #radius of Ne in nm
#Calculation
R=R*10**-9; #converting nm to m
alpha_e=4*math.pi*epsilon_0*R**3;
#Result
print("electronic polarizability in Fm^2 is",alpha_e);
#importing modules
import math
#Variable declaration
epsilon_0=8.854*10**-12;
C=0.02; #capacitance in micro farad
epsilon_r=6; #dielectric constant
t=0.002; #thickness of mica in cm
d=0.002; #thickness of metal sheet in cm
#Calculation
C=C*10**-6; #converting micro farad to farad
d=d*10**-2; #converting cm to m
A=(C*d)/(epsilon_0*epsilon_r);
A=A*10**3;
A=math.ceil(A*10**4)/10**4; #rounding off to 4 decimals
A1=A*10; #converting m**2 to cm**2
A1=math.ceil(A1*10**3)/10**3; #rounding off to 3 decimals
#Result
print("area of metal sheet in m^2 is",A,"*10**-3");
print("area of metal sheet in cm^2 is",A1);
#importing modules
import math
#Variable declaration
epsilon_0=8.854*10**-12;
E=1000; #electric field in V/m
P=4.3*10**-8; #polarization in C/m^2
#Calculation
epsilon_r=(P/(E*epsilon_0)+1);
epsilon_r=math.ceil(epsilon_r*10**4)/10**4; #rounding off to 4 decimals
#Result
print("dielectric constant is",epsilon_r);
#Variable declaration
epsilon_0=8.854*10**-12;
chi=4.94; #relative susceptibility
N=10**28; #number of dipoles per m^3
#Calculation
#polarisation P=N*alpha*E and P=epsilon_0*chi*E. equate the two equations
#epsilon_0*chi*E=N*alpha*E
alpha=(epsilon_0*chi)/N;
#Result
print("polarisability of material in F/m^2 is",alpha);