#importing modules
import math
#Variable declaration
h=6.63*10**-34; #plancks constant in Js
m0=9.1*10**-31; #mass of the electron in kg
c=3*10**8; #velocity of light in m/s
phi=135; #angle of scattering in degrees
phi=phi*0.0174532925 #converting degrees to radians
#Calculation
delta_lamda=(h*(1-math.cos(phi)))/(m0*c);
#Result
print("change in wavelength in metres is",delta_lamda);
#importing modules
import math
#Variable declaration
h=6.63*10**-34; #plancks constant in Js
m0=9.1*10**-31; #mass of the electron in kg
c=3*10**8; #velocity of light in m/s
lamda=2; #wavelength in angstrom
lamdaA=lamda*10**-10; #converting lamda from Angstrom to m
phi=90; #angle of scattering in degrees
phi=phi*0.0174532925 #converting degrees to radians
#Calculation
delta_lamda=(h*(1-math.cos(phi)))/(m0*c);
delta_lamda=delta_lamda*10**10; #converting delta_lamda from m to Angstrom
delta_lamda=math.ceil(delta_lamda*10**5)/10**5; #rounding off to 5 decimals
lamda_dash=delta_lamda+lamda;
lamdaA_dash=lamda_dash*10**-10; #converting lamda_dash from Angstrom to m
#energy E=h*new-h*new_dash
E=h*c*((1/lamdaA)-(1/lamdaA_dash));
EeV=E/(1.602176565*10**-19); #converting J to eV
EeV=math.ceil(EeV*10**3)/10**3; #rounding off to 3 decimals
new=c/lamda;
new_dash=c/lamda_dash;
theta=math.atan((h*new*math.sin(phi))/((h*new)-(h*new_dash*math.cos(phi))));
theta=theta*57.2957795; #converting radians to degrees
#Result
print("change in compton shift in Angstrom is",delta_lamda);
print("wavelength of scattered photons in Angstrom is",lamda_dash);
print("energy of recoiling electron in J is",E);
print("energy of recoiling electron in eV is",EeV);
print("angle at which recoiling electron appears in degrees is",int(theta));
#answers given in the book are wrong
#importing modules
import math
#Variable declaration
h=6.626*10**-34; #plancks constant in Js
m0=9.1*10**-31; #mass of the electron in kg
c=3*10**8; #velocity of light in m/s
phi=60; #angle of scattering in degrees
phi=phi*0.0174532925; #converting degrees to radians
E=10**6; #energy of photon in eV
E=E*1.6*10**-19; #converting eV into J
#Calculation
delta_lamda=(h*(1-math.cos(phi)))/(m0*c);
delta_lamda=delta_lamda*10**10; #converting metre to angstrom
delta_lamda=math.ceil(delta_lamda*10**4)/10**4; #rounding off to 4 decimals
lamda=(h*c)/E;
lamdaA=lamda*10**10; #converting metre to angstrom
lamda_dash=delta_lamda+lamdaA;
lamda_dash=math.ceil(lamda_dash*10**3)/10**3; #rounding off to 3 decimals
#Result
print("compton shift in angstrom is",delta_lamda);
print("energy of incident photon in m",lamda);
print("wavelength of scattered photons in angstrom is",lamda_dash);
#answer for wavelength of scattered photon given in the book is wrong
#importing modules
import math
#Variable declaration
h=6.626*10**-34; #plancks constant in Js
c=3*10**8; #velocity of light in m/s
lamda=5893; #wavelength in angstrom
P=60; #output power in Watt
#Calculation
lamda=lamda*10**-10; #wavelength in metre
E=(h*c)/lamda;
EeV=E/(1.602176565*10**-19); #converting J to eV
EeV=math.ceil(EeV*10**4)/10**4; #rounding off to 4 decimals
N=P/E;
#Result
print("energy of photon in J is",E);
print("energy of photon in eV is",EeV);
print("number of photons emitted per se cond is",N);
#answer for energy in eV given in the book is wrong
#importing modules
import math
#Variable declaration
h=6.626*10**-34; #plancks constant in Js
c=3*10**8; #velocity of light in m/s
lamda=10; #wavelength in angstrom
#Calculation
lamda=lamda*10**-10; #wavelength in metre
E=(h*c)/lamda;
EeV=E/(1.602176565*10**-19); #converting J to eV
EeV=EeV*10**-3; #converting eV to keV
EeV=math.ceil(EeV*10**3)/10**3; #rounding off to 3 decimals
P=h/lamda;
M=h/(lamda*c);
#Result
print("energy of photon in J is",E);
print("energy of photon in keV is",EeV);
print("momentum in kg m/sec is",P);
print("mass of photon in kg is",M);
#answer for energy of photon in keV given in the book is wrong by 1 decimal
#importing modules
import math
#Variable declaration
h=6.626*10**-34; #plancks constant in Js
m=9.1*10**-31; #mass of the electron in kg
e=1.602*10**-19;
V=1.25; #potential difference in kV
#Calculation
V=V*10**3; #converting kV to V
lamda=h/math.sqrt(2*m*e*V);
lamda=lamda*10**10; #converting metre to angstrom
lamda=math.ceil(lamda*10**4)/10**4; #rounding off to 4 decimals
#Result
print("de Broglie wavelength in angstrom is",lamda);
import math
#Variable declaration
E=45; #energy of electron in eV
E=E*1.6*10**-19; #energy in J
h=6.626*10**-34; #plancks constant in Js
m=9.1*10**-31; #mass of the electron in kg
#Calculation
lamda=h/math.sqrt(2*m*E);
lamda=lamda*10**10; #converting metres to angstrom
lamda=math.ceil(lamda*10**4)/10**4; #rounding off to 4 decimals
#Result
print("de Broglie wavelength in angstrom is",lamda);
#importing modules
import math
#Variable declaration
v=10**7; #velocity of electron in m/sec
h=6.626*10**-34; #plancks constant in Js
m=9.1*10**-31; #mass of the electron in kg
#Calculation
lamda=h/(m*v);
lamda=lamda*10**10; #converting metres to angstrom
lamda=math.ceil(lamda*10**4)/10**4; #rounding off to 4 decimals
#Result
print("de Broglie wavelength in angstrom is",lamda);
#importing modules
import math
#Variable declaration
V=1000; #potential difference in V
h=6.626*10**-34; #plancks constant in Js
m=1.67*10**-27; #mass of proton in kg
e=1.6*10**-19; #charge of electron in J
#Calculation
lamda=h/math.sqrt(2*m*e*V);
#Result
print("de Broglie wavelength of alpha particle in metre is",lamda);
#importing modules
import math
#Variable declaration
L=25; #width of potential in armstrong
delta_x=0.05; #interval in armstrong
n=1; #particle is in its least energy
x=L/2; #particle is at the centre
pi=180; #angle in degrees
#Calculation
pi=pi*0.0174532925; #angle in radians
L=L*10**-10; #width in m
delta_x=delta_x*10**-10; #interval in m
#probability P = integration of (A**2)*(math.sin(n*pi*x/L))**2*delta_x
#but A=math.sqrt(2/L)
#since the particle is in a small interval integration need not be applied
#therefore P=2*(L**(-1))*(math.sin(n*pi*x/L))**2*delta_x
P=2*(L**(-1))*((math.sin(n*pi*x/L))**2)*delta_x;
P=math.ceil(P*10**3)/10**3; #rounding off to 3 decimals
#Result
print("probability of finding the particle is",P);
#importing modules
import math
#Variable declaration
n=1;
h=6.626*10**-34; #plancks constant in Js
m=9.1*10**-31; #mass of the electron in kg
L=1; #width of potential well in angstrom
#Calculation
L=L*10**-10; #converting angstrom into metre
E=((n**2)*h**2)/(8*m*L**2);
EeV=E/(1.6*10**-19); #converting J to eV
EeV=math.ceil(EeV*10**3)/10**3; #rounding off to 3 decimals
#Result
print("lowest energy of electron in J is",E);
print("lowest energy of electron in eV is",EeV);
#importing modules
import math
#Variable declaration
n=1;
h=6.626*10**-34; #plancks constant in Js
m=9.1*10**-31; #mass of the electron in kg
L=1; #width of potential well in angstrom
#Calculation
L=L*10**-10; #converting angstrom into metre
E=(2*(n**2)*h**2)/(8*m*L**2);
E=E/(1.6*10**-19); #converting J to eV
E=math.ceil(E*10**3)/10**3; #rounding off to 3 decimals
#Result
print("lowest energy of system in eV is",E);
#importing modules
import math
#Variable declaration
h=6.626*10**-34; #plancks constant in Js
m=9.1*10**-31; #mass of the electron in kg
L=1; #width of potential well in angstrom
#Calculation
L=L*10**-10; #converting angstrom into metre
#according to pauli's exclusion principle, 1st electron occupies n1=1 and second electron occupies n2=2
n1=1;
n2=2;
E=((2*(n1**2)*h**2)/(8*m*L**2))+(((n2**2)*h**2)/(8*m*L**2));
E=E/(1.6*10**-19); #converting J to eV
E=math.ceil(E*10**3)/10**3; #rounding off to 3 decimals
#Result
print("lowest energy of system in eV is",E);
print("quantum numbers are");
print("n=1,l=0,mL=0,mS=+1/2");
print("n=1,l=0,mL=0,mS=-1/2");
print("n=2,l=0,mL=0,mS=+1/2");
#Variable declaration
n=1;
h=6.626*10**-34; #plancks constant in Js
L=100; #width of potential well in angstrom
#Calculation
L=L*10**-10; #converting angstrom into metre
E=0.025; #lowest energy in eV
E=E*(1.6*10**-19); #converting eV to J
m=((n**2)*h**2)/(8*E*L**2);
#Result
print("mass of the particle in kg is",m);
#importing modules
import math
#Variable declaration
k=1.38*10**-23;
T=6000; #temperature in K
h=6.626*10**-34; #plancks constant in Js
c=3*10**8; #velocity of light in m/s
lamda1=450; #wavelength in nm
lamda2=460; #wavelength in nm
#Calculation
lamda1=lamda1*10**-9; #converting nm to metre
lamda2=lamda2*10**-9; #converting nm to metre
new1=c/lamda1;
new2=c/lamda2;
new=(new1+new2)/2;
A=math.exp((h*new)/(k*T));
rho_v=(8*math.pi*h*new**3)/(A*c**3);
#Result
print("energy density of the black body in J/m^3 is",rho_v);
#answer given in the book is wrong