Semiconducting materials

Example number 9.1, Page number 266

In [1]:
#Variable declaration
mew_e=0.36;    #mobility of electrons in m^2/Vs
mew_h=0.14;    #mobility of holes in m^2/Vs
sigma=2.2;    #conductivity in ohm-1 m-1
T=300;     #temperature in K
e=1.6*10**-19;   #electron charge in C

#Calculation
ni=sigma/(e*(mew_e+mew_h));    #carrier concentration per m^3

#Result
print("carrier concentration of an intrinsic semiconductor per m^3 is",ni);
('carrier concentration of an intrinsic semiconductor per m^3 is', 2.75e+19)

Example number 9.2, Page number 266

In [3]:
#importing modules
import math
import numpy as np
from __future__ import division

#Variable declaration
T1=20;    #temperature in C
T2=100;    #temperature in C
sigma_i20=250;     #conductivity in ohm-1 m-1
sigma_i100=1100;     #conductivity in ohm-1 m-1
k=1.38*10**-23;

#Calculation
T1K=T1+273;     #temperature in K
T2K=T2+273;     #temperature in K
T_1K=T1K**(-1);
T_2K=T2K**(-1);
T_1=T_2K-T_1K;
T_2=T2K/T1K;
Tk=T_1**(-1);
T_k=(T_2)**(3/2);
#intrinsic carrier concentration at T1K is ni20 = 2*((2*math.pi*k*m*293)/h**2)**(3/2)*((me*mh)/m**2)**(3/4)*math.exp(-Eg/(2*k*293))
#intrinsic carrier concentration at T2K is ni100 = 2*((2*math.pi*k*m*373)/h**2)**(3/2)*((me*mh)/m**2)**(3/4)*math.exp(-Eg/(2*k*373))
#dividing ni20/ni100 = (293/373)**(3/2)*(math.exp(-Eg/(2*k*293))/math.exp(-Eg/(2*k*373)))
#ni20/ni100 = (293/373)**(3/2)*math.exp((-Eg/(2*k))((1/293)-(1/373)))
#sigma_i20/sigma_i100 = (ni20*e*(mew_e+mew_h))/(ni100*e*(mew_e+mew_h)) = ni20/ni100
#therefore sigma_i20/sigma_i100 = ni20/ni100 = (293/373)**(3/2)*math.exp((-Eg/(2*k))((1/293)-(1/373)))
#math.exp((-Eg/(2*k))*((1/293)-(1/373))) = (sigma_i20/sigma_i100)*(373/293)**(3/2)
#by taking log on both sides we get (-Eg/(2*k))*((1/293)-(1/373)) = np.log((sigma_i20/sigma_i100)*(373/293)**(3/2))
#Eg=2*k*(((1/373)-(1/293))**(-1))*np.log((sigma_i20/sigma_i100)*(373/293)**(3/2))
Eg=2*k*Tk*np.log((sigma_i20/sigma_i100)*T_k);   #band gap in J
EgeV=Eg*6.241*10**18;    #converting J to eV
EgeV=math.ceil(EgeV*10**4)/10**4;   #rounding off to 4 decimals

#Result
print("band gap of the semiconductor in J is",Eg);
print("band gap of the semiconductor in eV is",EgeV);

#answer for band gap in eV given in the book is wrong in the 4th decimal point
('band gap of the semiconductor in J is', 4.2210259829756855e-20)
('band gap of the semiconductor in eV is', 0.2635)

Example number 9.3, Page number 267

In [1]:
#Variable declaration
I=10**-2;    #current in Ampere
l=100;    #length in mm
d=1;     #thickness in mm
w=10;    #breadth in mm
B=0.5;   #magnetic field in Wb/m^2
RH=3.66*10**-4;    #hall coefficient in m^3/C

#Calculation
w=w*10**-3;    #width in m
VH=(B*I*RH)/w;    #hall voltage
VH=VH*10**4;

#Result
print("Hall voltage in V is",VH,"*10**-4");
('Hall voltage in V is', 1.83, '*10**-4')

Example number 9.4, Page number 268

In [11]:
#importing modules
import math

#Variable declaration
sigma=300;   #conductivity in S/cm
T=300;   #temperature in K
ni=1.5*10**10    #carrier concentration per cm^3
mew_e=1300;   #mobility of electrons in cm^2/Vs
mew_h=500;    #mobility of holes in cm^2/Vs
e=1.6*10**-19;    #electron charge in C

#Calculation
sigma=sigma*10**2;    #sigma in S/m
mew_e=mew_e*10**-4;   #mobility of electrons in m^2/Vs
ND=sigma/(e*mew_e);   #concentration of electron per m^3
ni=ni*10**6;         #carrier concentration per m^3
p=ni**2/ND;     #hole concentration per m^3
p=p/10**8;
p=math.ceil(p*10**3)/10**3;   #rounding off to 3 decimals
mew_h=mew_h*10**-4;    #mobility of holes in m^2/Vs
NA=sigma/(e*mew_h);   #concentration of hole per m^3
n=ni**2/NA;     #electron concentration per m^3
n=n/10**7;

#Result
print("concentration of electron for N-type semiconductor per m^3",ND);
print("hole concentration per m^3",p,"*10**8");
print("concentration of hole for P-type semiconductor per m^3",NA);
print("electron concentration per m^3",int(n),"*10**7");
('concentration of electron for N-type semiconductor per m^3', 1.4423076923076921e+24)
('hole concentration per m^3', 1.561, '*10**8')
('concentration of hole for P-type semiconductor per m^3', 3.7499999999999995e+24)
('electron concentration per m^3', 6, '*10**7')

Example number 9.5, Page number 269

In [13]:
#importing modules
import math

#Variable declaration
RH=-3.68*10**-5;    #hall coefficient in m^3/C
e=1.6*10**-19;    #electron charge in C

#Calculation
#hall coefficient is negative implies charge carriers are electrons
n=(3*math.pi)/(8*(-RH)*e);     #carrier concentration

#Result
print("charge carriers are electrons");
print("carrier concentration per m^3 is",n);
charge carriers are electrons
('carrier concentration per m^3 is', 2.000844505937792e+23)

Example number 9.6, Page number 269

In [16]:
#importing modules
import math
from __future__ import division

#Variable declaration
Eg1=0.36;    #energy gap of 1st material in eV
Eg2=0.72;   #energy gap of 2nd material in eV
T=300;     #temperature in K
mh=9*10**-31;
me=9*10**-31; 
#given that 2*k*T=0.052;    
#consider X=2*k*T
X=0.052;

#Calculation
#intrinsic carrier concentration for A niA = 2*((2*math.pi*k*T*m)/h**2)**(3/2)*((me*mh)/m**2)**(3/4)*math.exp(-0.36/(2*k*T))
#intrinsic carrier concentration for B niB = 2*((2*math.pi*k*T*m)/h**2)**(3/2)*((me*mh)/m**2)**(3/4)*math.exp(-0.72/(2*k*T))
#dividing niA/niB = math.exp(-0.36/(2*k*T))*math.exp(0.72/(2*k*T))
#let niA/niB be A
A = math.exp(-0.36/X)*math.exp(0.72/X);
A=A/10**3;
A=math.ceil(A*10**5)/10**5;   #rounding off to 5 decimals

#Result
print("ratio of intrinsic carrier densities of A and B is",A,"*10**3");
('ratio of intrinsic carrier densities of A and B is', 1.01544, '*10**3')

Example number 9.7, Page number 270

In [17]:
#importing modules
import math

#Variable declaration
ND=2*10**22;     #concentration of electron per m^3
sigma=112;     #conductivity in ohm-1 m-1
e=1.6*10**-19;    #electron charge in C

#Calculation
mew=sigma/(ND*e);    #mobility of electrons 
mew=math.ceil(mew*10**3)/10**3;   #rounding off to 3 decimals

#Result
print("mobility of electrons in m^2/Vs is",mew);
('mobility of electrons in m^2/Vs is', 0.035)

Example number 9.8, Page number 270

In [23]:
#importing modules
import math

#Variable declaration
w=500;     #thickness  in micrometre
A=2.5*10**-3;    #area of cross section in cm^-2
Ix=1;     #current in ampere
Bz=10;    #magnetic field in Wb/cm^2
n=10**16;    #donor concentration in m^-3
e=1.6*10**-19;    #electron charge in C

#Calculation
Bz=Bz*10**-4;    #magnetic field in Wb/m^2
w=w*10**-6;    #thickness in m
RH=(3*math.pi)/(8*n*e);     #hall coefficient
VH=(Bz*Ix*RH)/w;    #hall voltage
VH=VH/10**3;
VH=math.ceil(VH*10**4)/10**4;   #rounding off to 4 decimals

#Result
print("hall voltage in V is",VH,"*10**3");
('hall voltage in V is', 1.4727, '*10**3')

Example number 9.9, Page number 271

In [25]:
#importing modules
import math
from __future__ import division
import numpy as np

#Variable declaration
Eg=1.2;    #energy gap in eV
T1=300;    #temperature in K
T2=600;    #temperature in K
k=1.38*10**-23;

#Calculation
T_1=T1**(-1);
T_2=T2**(-1);
T=T_1-T_2;
Eg=Eg*1.602*10**-19;    #Eg in J
#sigma_300=ni300*e*(mew_e+mew_h)
#sigma_600=ni600*e*(mew_e+mew_h)
#sigma_600/sigma_300 = ni600/ni300
#ni600/ni300 =((T2/T1)**(3/2))*math.exp(-Eg/(2*k*T2))*math.exp(Eg/(2*k*T1));
#ni600/ni300 =((T2/T1)**(3/2))*math.exp((Eg/(2*k))*T;
#let ni600/ni300 be X
X=((T2/T1)**(3/2))*math.exp((Eg/(2*k))*T);


#Result
print("ratio between the conductivity of material is",int(X));

#answer given in the book is wrong
('ratio between the conductivity of material is', 311270)

Example number 9.10, Page number 272

In [27]:
#importing modules
import math

#Variable declaration
sigma=10**-6;    #electrical conductivity in ohm-1 m-1
mew_e=0.85;    #electron mobility in m^2/Vs
mew_h=0.04;    #hole mobility in m^2/Vs
e=1.6*10**-19;    #electron charge in C

#Calculation
ni=sigma/(e*(mew_e+mew_h));     #intrinsic carrier concentration
ni=ni/10**12;
ni=math.ceil(ni*10**4)/10**4;   #rounding off to 4 decimals

#Result
print("intrinsic carrier concentration per m^3 is",ni,"*10**12");
('intrinsic carrier concentration per m^3 is', 7.0225, '*10**12')

Example number 9.11, Page number 272

In [33]:
#importing modules
import math

#Variable declaration
rho_p=10;   #resistivity of p-type Si in ohm cm
rho_n=10;   #resistivity of n-type Si in ohm cm
mew_e=1350;   #electron mobility in cm^2/Vs
mew_h=480;    #hole mobility in cm^2/Vs
ni=1.5*10**10;    #carrier concentration in cm^-3
e=1.6*10**-19;    #electron charge in C

#Calculation
rho_p=rho_p*10**-2;#resistivity of p-type Si in ohm m
sigma_p=1/rho_p;   #electrical conductivity
mew_h=mew_h*10**-3;
NA=sigma_p/(e*mew_h);   #acceptor concentration
ni=ni*10**6;    #carrier concentration in m^-3
n=ni**2/NA;    #concentration of minority carriers in m^-3
n=n/10**12;
n=math.ceil(n*10**4)/10**4;   #rounding off to 4 decimals
rho_n=rho_n*10**-2;      #resistivity of n-type Si in ohm m
sigma_n=1/rho_n;   #electrical conductivity
mew_e=mew_e*10**-3;
ND=sigma_n/(e*mew_e);   #donor concentration
p=(ni**2)/ND;    #concentration of minority carriers in m^-3
p=p/10**12;
p=math.ceil(p*10**3)/10**3;   #rounding off to 3 decimals

#Result
print("donor concentration per m^3 is",ND);
print("concentration of minority carriers per m^3",p,"*10**12");
print("acceptor concentration per m^3 is",NA);
print("concentration of minority carriers per m^3 is",n,"*10**12");
('donor concentration per m^3 is', 4.6296296296296284e+19)
('concentration of minority carriers per m^3', 4.861, '*10**12')
('acceptor concentration per m^3 is', 1.3020833333333331e+20)
('concentration of minority carriers per m^3 is', 1.7281, '*10**12')
In [ ]: