#Variable declaration
c=3*10**8 #velocity of light in m/s
h=6.626*10**-34 #planks constant
m=1.67*10**-27 #mass of proton
#Calculation
v=c/10 #velocity of proton
lamda=h/(m*v) #de Broglie wave length
#Result
print("the de Broglie wavelength in m is ",lamda);
#importing modules
import math
#Variable declaration
V=400; #potential in Volts
#Calculation
lamda=12.56/math.sqrt(V); #de Broglie wavelength
#Result
print("The de Broglie wavelength in Armstrong is",lamda);
#answer given in the book is wrong
#importing modules
import math
#Variable declaration
m=1.674*10**(-27); #mass of neutron in kg
h=6.626*10**(-34);
E=0.025; #kinetic energy in eV
#Calculation
Ej=E*1.6*10**-19; #kinetic energy in J
lamda=h/math.sqrt(2*m*Ej); #de Broglie wavelength
lamdaA=lamda*10**10; #converting wavelength from m to Armstrong
lamdaA=math.ceil(lamdaA*10**3)/10**3; #rounding off to 3 decimals
#Result
print("The de Broglie wavelength in metres is",lamda);
print("The de Broglie wavelength in Armstrong is",lamdaA);
#importing modules
import math
#Variable declaration
V=1600; #potential in Volts
#Calculation
lamda=12.56/math.sqrt(V); #de Broglie wavelength
lamda=math.ceil(lamda*10**2)/10**2; #rounding off to 2 decimals
#Result
print("The de Broglie wavelength in Armstrong is",lamda);
#importing modules
import math
#Variable declaration
deltax=0.2; #distance in armstrong
h=6.626*10**(-34);
#Calculation
delta_xm=deltax*10**-10; #distance in m
delta_p=h/(2*math.pi*delta_xm);
#Result
print("The uncertainity in momentum of electron in kg m/sec is",delta_p);
#importing modules
import math
#Variable declaration
n1=1;
n2=1;
n3=1; #values in lowest energy
h=6.62*10**(-34);
M=9.1*10**-31; #mass in kg
L=0.1; #side in nm
#Calculation
L=L*10**-9; #side in m
n=(n1**2)+(n2**2)+(n3**2);
E1=(n*h**2)/(8*M*L**2); #energy in j
E1eV=E1/(1.6*10**-19); #energy in eV
E1eV=math.ceil(E1eV*10)/10; #rounding off to 1 decimals
#Result
print("lowest energy of electron in Joule is",E1);
print("lowest energy of electron is eV",E1eV);
#answer for lowest energy in eV given in the book is wrong
#importing modules
import math
#Variable declaration
M=9.1*10**(-31); #mass of electron in kg
h=6.66*10**(-34);
E=2000; #kinetic energy in eV
#Calculation
Ej=E*1.6*10**-19; #kinetic energy in J
lamda=h/math.sqrt(2*M*Ej); #de Broglie wavelength
lamdaA=lamda*10**9; #converting wavelength from m to nm
lamdaA=math.ceil(lamdaA*10**3)/10**3; #rounding off to 3 decimals
#Result
print("The de Broglie wavelength in nm is",lamdaA);
#importing modules
import math
#Variable declaration
n=1; #for minimum energy
h=6.626*10**(-34);
m=9.1*10**-31; #mass in kg
L=4*10**-10; #size in m
#Calculation
E1=(n*h**2)/(8*m*L**2); #energy in j
#Result
print("lowest energy of electron in Joule is",E1);
#answer given in the book is wrong
#importing modules
import math
from __future__ import division
#Variable declaration
h=6.626*10**(-34);
m=9.1*10**-31; #mass in kg
lamda=1.66*10**-10; #wavelength in m
#Calculation
v=h/(m*lamda); #velocity in m/sec
v_km=v*10**-3; #velocity in km/sec
E=(1/2)*m*v**2; #kinetic energy in joule
EeV=E/(1.6*10**-19); #energy in eV
EeV=math.ceil(EeV*10**3)/10**3; #rounding off to 3 decimals
#Result
print("velocity of electron in m/sec is",round(v));
print("velocity of electron in km/sec is",round(v_km));
print("kinetic energy of electron in Joule is",E);
print("kinetic energy of electron in eV is",EeV);
#importing modules
import math
#Variable decleration
V=15; #potential in kV
#Calculation
v=V*10**3; #potential in V
lamda=12.26/math.sqrt(v); #de Broglie wavelength
lamda=math.ceil(lamda*10**2)/10**2 #rounding off to 2 decimals
#result
print("The de Broglie wavelength in Armstrong is",lamda);
#importing modules
import math
#Calculation
m=1.675*10**-27; #mass of neutron in kg
h=6.626*10**-34;
E=10; #kinetic energy in keV
#Calculation
EeV=E*10**3; #Energy in eV
Ej=EeV*1.6*10**-19; #kinetic energy in J
v=math.sqrt(2*Ej/m); #velocity in m/s
lamda=h/(m*v); #de broglie wavelength in m
lamda_A=lamda*10**10; #de broglie wavelength in armstrong
lamda_A=math.ceil(lamda_A*10**4)/10**4 #rounding off to 4 decimals
#Result
print("The velocity in m/sec is",round(v));
print("The de Broglie wavelength in metres is",lamda);
print("The de Broglie wavelength in Armstrong is",lamda_A);
#importing modules
import math
#Variable decleration
m=9.1*10**-31; #mass of electron in kg
h=6.6*10**-34;
E=2; #kinetic energy in keV
#Calculation
EeV=E*10**3; #Energy in eV
Ej=EeV*1.6*10**-19; #kinetic energy in J
p=math.sqrt(2*m*Ej); #momentum
lamda=h/p; #de broglie wavelength in m
lamda_A=lamda*10**10; #de broglie wavelength in armstrong
lamda_A=math.ceil(lamda_A*10**4)/10**4 #rounding off to 4 decimals
#Result
print("The de Broglie wavelength in metres is",lamda);
print("The de Broglie wavelength in Armstrong is",lamda_A);
#import module
import math
#Variable decleration
m=1.676*10**-27; #mass of neutron in kg
h=6.62*10**-34;
E=0.025; #kinetic energy in eV
#Calculation
Ej=E*1.6*10**-19; #kinetic energy in J
v=math.sqrt(2*Ej/m); #velocity in m/s
lamda=h/(m*v); #wavelength in m
lamda_A=lamda*10**10; #de broglie wavelength in armstrong
lamda_A=math.ceil(lamda_A*10**5)/10**5 #rounding off to 5 decimals
#Result
print("The neutrons wavelength in metres is",lamda);
print("The wavelength in Armstrong is",lamda_A);
#import module
import math
#Variable decleration
V=10; #potential in kV
#Calculation
V=V*10**3; #potential in V
lamda=12.26/math.sqrt(V); #wavelength
#Result
print("The wavelength in Armstrong is",lamda);
#import module
import math
#Varialble decleration
h=6.626*10**-34;
m=9.1*10**-31; #mass in kg
l=1; #width in armstrong
#Calculation
L=l*10**-10; #width in m
#permitted electron energies En=(n**2*h**2)/(8*m*L**2)
#let X = h**2/(8*m*L**2)
X = h**2/(8*m*L**2); #energy in J
XeV=X/(1.6*10**-19); #energy in eV
#in the 1st level n1=1
n1=1;
E1=(n1**2)*XeV; #energy in eV
#in second level n2=2
n2=2;
E2=(n2**2)*XeV; #energy in eV
#in third level n3=
n3=3;
E3=(n3**2)*XeV; #energy in eV
#Result
print("minimum energy the electron can have in eV is",round(E1));
print("other values of energy are in eV and in eV",round(E2),round(E3));
#answers given in the book are wrong
#import module
import math
#Variable decleration
n=1; #lowest state
L=10; #width in armstrong
#Calculation
L=L*10**-10; #width in m
x=L/2;
delta_x=1; #interval in armstrong
delta_x=delta_x*10**-10; #interval in m
psi1=(math.sqrt(2/L))*math.sin(math.pi*x/L);
A=psi1**2;
p=A*delta_x;
p=math.ceil(p*10)/10; #de broglie wavelength in armstrong
#Result
print("probability of finding the particle is ",p);
#import module
import math
from __future__ import division
#Variable decleration
d=970; #density of Na in kg/m^3
n=6.02*10**26;
h=6.62*10**(-34);
m=9.1*10**-31; #mass in kg
w=23; #atomic weight
#Calculation
N=(d*n)/w; #number of atoms per m^3
A=(h**2)/(8*m);
B=(3*N)/math.pi;
Ef=A*B**(2/3);
EfeV=Ef/(1.6*10**-19);
EfeV=math.ceil(EfeV*10**2)/10**2 #rounding of to 2 decimals
#Result
print("fermi energy of Na in eV is",EfeV);
#import module
import math
from __future__ import division
#Variable decleration
n1=1;
n2=1;
n3=1; #values in lowest energy
h=6.62*10**(-34);
m=9.1*10**-31; #mass in kg
L=0.1; #side in nm
#Calculation
L=L*10**-9; #side in m
n=(n1**2)+(n2**2)+(n3**2);
E1=(n*h**2)/(8*m*L**2); #energy in j
E1eV=E1/(1.6*10**-19); #energy in eV
E1eV=math.ceil(E1eV*10**1)/10**1 #rounding off to 2 decimals
#Result
print("lowest energy of electron in Joule is",E1);
print("lowest energy of electron in eV is",E1eV);
#import module
import math
from __future__ import division
#Variable decleration
mn=1.676*10**-27; #mass of neutron in kg
me=9.1*10**-31; #mass of electron in kg
h=6.62*10**-34;
c=3*10**8; #velocity of light in m/sec
#Calculation
En=2*me*c**2;
lamda=h/math.sqrt(2*mn*En); #wavelength in m
lamda_A=lamda*10**10; #converting lamda from m to A
lamda_A=math.ceil(lamda_A*10**6)/10**6 #rounding off to 6 decimals
#Result
print("The de broglie wavelength in Angstrom is",lamda_A);
#import module
import math
from __future__ import division
#Variable decleration
n2=2; #second quantum state
n4=4; #fourth quantum state
h=6.626*10**-34;
m=9.1*10**-31; #mass in kg
a=2; #potential box length in armstrong
#Calculation
a=a*10**-10; #length in m
A=n2**2*h**2;
B=8*m*a**2;
E2=A/B; #energy in j
E2eV=E2/(1.6*10**-19); #energy in eV
C=n4**2*h**2;
E4=C/B; #energy in j
E4eV=E4/(1.6*10**-19); #energy in eV
#Result
print("energy corresponding to second quantum state in Joule is",E2);
print("energy corresponding to second quantum state in eV is",E2eV);
print("energy corresponding to fourth quantum state in Joule is",E4);
print("energy corresponding to fourth quantum state in eV is",E4eV);
#answers given in the book are wrong
#import module
import math
from __future__ import division
#Variable decleration
V=344; #accelerated voltage in V
n=1; #first reflection
theta=60; #glancing angle in degrees
#Calculation
lamda=12.27/math.sqrt(V);
d=(n*lamda)/(2*math.sin(theta));
#Result
print("The spacing of the crystal in Angstrom is",lamda);
#import module
import math
from __future__ import division
#Variable decleration
n2=2; #second quantum state
n3=3; #fourth quantum state
h=6.626*10**-34;
m=9.1*10**-31; #mass in kg
a=1*10**-10; #width of potential well in m
#Calculation
B=8*m*a**2;
E1=h**2/B; #ground state energy
E1eV=E1/(1.6*10**-19); #energy in eV
A=n2**2*h**2;
E2=A/B; #energy in j
E2eV=E2/(1.6*10**-19); #energy in eV
C=n3**2*h**2;
E3=C/B; #energy in j
E3eV=E3/(1.6*10**-19); #energy in eV
E1=math.ceil(E1*10**3)/10**3 #rounding off to 3 decimals
E1eV=math.ceil(E1eV*10**3)/10**3 #rounding off to 3 decimals
E2eV=math.ceil(E2eV*10**3)/10**3 #rounding off to 3 decimals
E3eV=math.ceil(E3eV*10**3)/10**3 #rounding off to 3 decimals
#Result
print("ground state energy in Joule is",E1);
print("ground state energy in eV is",E1eV);
print("first energy state in eV is",E2eV);
print("second energy state in eV is",E3eV);
#answers given in the book are wrong by one decimal
#import module
import math
#Variable decleration
n3=3; #fourth quantum state
h=6.626*10**-34;
m=9.1*10**-31; #mass in kg
#ground state energy E1 = h**2/(8*m*a**2)
#second excited state E3 = (9*h**2)/(8*m*a**2)
#required energy E = E3-E1
#E = (9*h**2)/(8*m*a**2) - h**2/(8*m*a**2)
#E = (h**2/(8*m*a**2))*(9-1)
#therefore E = (8*h**2)/(8*m*a**2)
#hence E = (h**2)/(m*a**2)
#Result
# the required energy is E = (h**2)/(m*a**2)
#import module
import math
from __future__ import division
#Variable decleration
delta_x=10**-8; #length of box in m
h=6.626*10**-34;
m=9.1*10**-31; #mass in kg
#Calculation
delta_v=h/(m*delta_x); #uncertainity in m/sec
delta_vk=delta_v*10**-3; #uncertainity in km/sec
delta_vk=math.ceil(delta_vk*10**2)/10**2 #rounding off to 2 decimals
#Result
print("minimum uncertainity in velocity in m/sec is",round(delta_v));
print("minimum uncertainity in velocity in km/sec is",delta_vk);
#import module
import math
from __future__ import division
#Variable decleration
mp=1.6*10**-27; #mass of proton in kg
me=9.1*10**-31; #mass of electron in kg
h=6.626*10**(-34);
c=3*10**10; #velocity of light in m/sec
#Calculation
Ep=me*c**2;
lamda=h/math.sqrt(2*mp*Ep); #wavelength in m
lamda_A=lamda*10**10; #converting lamda from m to A
#Result
print("The de broglie wavelength in Angstrom is",lamda_A);
#import module
import math
from __future__ import division
#Variable decleration
m=1.675*10**(-27); #mass of neutron in kg
h=6.626*10**(-34);
n=1; #diffractive order
d=0.314; #spacing in nm
E=0.04; #kinetic energy in eV
#Calculation
d=d*10**-9; #spacing in m
Ej=E*1.6*10**-19; #kinetic energy in J
lamda=h/math.sqrt(2*m*Ej); #de Broglie wavelength
lamdaA=lamda*10**9; #converting wavelength from m to nm
theta=math.asin((n*lamda)/(2*d));
print("The de Broglie wavelength in metres is",lamda);
print("The de Broglie wavelength in nm is",lamdaA);
print("glancing angle in degrees is",theta);
#answer given in the book is wrong