Superconductivity¶

Example number 5.1, Page number 148¶

In [4]:

#importing modules
import math

#Variable declaration
Tc=3.7;        #in kelvin
Hc_0=0.0306;
T=2

#Calculation
Hc_2k=Hc_0*(1-((T/Tc)**2));
Hc_2k=math.ceil(Hc_2k*10**5)/10**5;   #rounding off to 5 decimals

#Result
print("the critical feild at 2K in tesla is",Hc_2k);

('the critical feild at 2K in tesla is', 0.02166)


Example number 5.2, Page number 149¶

In [19]:

#importing modules
import math

#Variable declaration
T=4.2;                     #in kelvin
Tc=7.18;                   #in kelvin
Hc_0=6.5*10**4;            #in amp per meter
D=10**-3

#Calculation
R=D/2;                      #radius is equal to half of diameter
Hc_T=Hc_0*(1-((T/Tc)**2));
Hc_T=math.ceil(Hc_T*10)/10;   #rounding off to 1 decimals
Ic=2*math.pi*R*Hc_T        #critical current is calculated by 2*pi*r*Hc(T)
Ic=math.ceil(Ic*10**2)/10**2;   #rounding off to 2 decimals

#Result
print("the critical feild in Tesla is",round(Hc_T));
print("the critical current in Amp is",Ic);

('the critical feild in Tesla is', 42759.0)
('the critical current in Amp is', 134.34)


Example number 5.3, Page number 149¶

In [29]:

#importing modules
import math

#Variable declaration
lamda_T=75          #in nm
T=3.5
HgTc=4.12          #in K

#Calculation
lamda_o=lamda_T*math.sqrt(1-((T/HgTc)**4));
lamda_o=math.ceil(lamda_o*10**2)/10**2;   #rounding off to 2 decimals

#Result
print("the pentration depth at 0k is",lamda_o);

('the pentration depth at 0k is', 51.92)


Example number 5.4, Page number 150¶

In [44]:

#importing modules
import math

#Variable declaration
lamda_T1=396             #pentration depth in armstrong
lamda_T2=1730            #pentration depth in armstrong
T1=3                     #temperature in K
T2=7.1                   #temperature in K

#Calculation
#lamda_T2**2=lamda_0**2*(((Tc**4-T2**4)/Tc**4)**-1)
#lamda_T1**2=lamda_0**2*(((Tc**4-T1**4)/Tc**4)**-1)
#dividing lamda_T2**2 by lamda_T1**2 = (Tc**4-T1**4)/(Tc**4-T2**4)
#let A=lamda_T2**2 and B=lamda_T1**2
A=lamda_T2**2
B=lamda_T1**2
C=A/B
C=math.ceil(C*10**4)/10**4;   #rounding off to 4 decimals
X=T1**4
Y=T2**4
Y=math.ceil(Y*10**2)/10**2;   #rounding off to 2 decimals
#C*((TC**4)-Y)=(Tc**4)-X
#C*(Tc**4)-(Tc**4)=C*Y-X
#(Tc**4)*(C-1)=(C*Y)-X
#let Tc**4 be D
#D*(C-1)=(C*Y)-X
D=((C*Y)-X)/(C-1)
D=math.ceil(D*10)/10;   #rounding off to 1 decimals
Tc=D**(1/4)
Tc=math.ceil(Tc*10**4)/10**4;   #rounding off to 4 decimals

#Result
print("the pentration depth at 0k is",Tc);

('the pentration depth at 0k is', 7.1932)


Example number 5.5, Page number 150¶

In [33]:

#importing modules
import math

#Variable declaration
Tc=7.2            #in K
Ho=6.5*10**3      #in amp per m
T=5               #in K

#Calculation
Hc=Ho*(1-((T/Tc)**2))
Hc=math.ceil(Hc*10**2)/10**2;   #rounding off to 2 decimals

#Result
print("the critical magnetic feild at 5K in amp per m is",Hc)

# answer given in the book is wrong

('the critical magnetic feild at 5K in amp per m is', 3365.36)


Example number 5.6, Page number 151¶

In [45]:

#importing modules
import math

#Variable declaration
Tc=3.5            #in K
Ho=3.2*10**3      #in amp per m
T=2.5             #in K

#Calculation
Hc=Ho*(1-((T/Tc)**2))
Hc=math.ceil(Hc*10**2)/10**2;   #rounding off to 2 decimals

#Result
print("the critical magnetic feild at 5K in amp per m is",Hc)

#answer in the book is wrong

('the critical magnetic feild at 5K in amp per m is', 1567.35)


Example number 5.7, Page number 151¶

In [66]:

#importing modules
import math

#Variable declaration
Hc=5*10**3        #in amp per m
Ho=2*10**4        #in amp per m
T=6               #in K

#Calculation
Tc=T/math.sqrt(1-(Hc/Ho))
Tc=math.ceil(Tc*10**2)/10**2;   #rounding off to 2 decimals

#Result
print("the critical magnetic feild at 5K in amp per m is",Tc)

#answer in the book is wrong

('the critical magnetic feild at 5K in amp per m is', 6.93)


Example number 5.8, Page number 152¶

In [2]:

#importing modules
import math

#Variable declaration
Hc=2*10**3        #in amp per m
R=0.02           #in m

#Calculation
Ic=2*math.pi*R*Hc
Ic=math.ceil(Ic*10**2)/10**2;   #rounding off to 2 decimals

#Result
print("the critical current is",Ic)

#answer in the book is wrong

('the critical magnetic feild at 5K in amp per m is', 251.33)


Example number 5.9, Page number 152¶

In [4]:

#importing modules
import math

#Variable declaration
M1=199.5       #in a.m.u
T1=5            #in K
T2=5.1          #in K

#Calculation
M2=((T1/T2)**2)*M1
M2=math.ceil(M2*10**3)/10**3;   #rounding off to 3 decimals

#Result
print("the isotopic mass of M2 is",M2)

('the isotopic mass of M2 is', 191.754)


Example number 5.10, Page number 152¶

In [22]:
import math
from __future__ import division

#Variable declaration
D=3*10**-3        #in meters
Tc=8              #in K
T=5               #in K
Ho=5*10**4

#Calculation
R=D/2
Hc=Ho*(1-((T/Tc)**2))
Ic=2*math.pi*R*Hc
Ic=math.ceil(Ic*10**3)/10**3;   #rounding off to 3 decimals

#Result
print("critical magnetic feild in amp per m is",round(Hc));
print("critical current in amp is",Ic);

#answer in the book is wrong

('critical magnetic feild in amp per m is', 30469.0)
('critical current in amp is', 287.162)


Example number 5.11, Page number 153¶

In [3]:

#importing modules
import math

#Variable declaration
M1=199.5
M2=203.4
Tc1=4.185            #in K

#Calculation
Tc2=Tc1*math.sqrt(M1/M2)
Tc2=math.ceil(Tc2*10**3)/10**3;   #rounding off to 3 decimals

#Result
print("the critical temperature is",Tc2)

('the critical temperature is', 4.145)


Example number 5.12, Page number 154¶

In [24]:

#importing modules
import math
from __future__ import division

#Variable declaration
V=8.5*10**-6           #in volts
e=1.6*10**-19          #in C
h=6.626*10**-24

#Calculation
new=2*e*V/h
new=math.ceil(new*10**5)/10**5;   #rounding off to 5 decimals

#Result
print("EM wave generated frequency in Hz is",new)

('EM wave generated frequency in Hz is', 0.41051)


Example number 5.13, Page number 154¶

In [14]:

#Variable declaration
p1=1      #in mm
p2=6      #in mm
Tc1=5     #in K

#Calculation
Tc2=Tc1*(p2/p1);

#Result
print("the critical temperature in K is",round(Tc2))

('the critical temperature in K is', 30.0)


Example number 5.14, Page number 154¶

In [15]:

#Variable declaration
Tc=8.7        #in K
Hc=6*10**5         #in A per m
Ho=3*10**6       #in A per m

#Calculation
T=Tc*(math.sqrt(1-(Hc/Ho)))

#Result
print(" maximum critical temperature in K is",T)

#answer given in the book is wrong

(' maximum critical temperature in K is', 7.781516561699267)

In [ ]: