#import modules
import math
from __future__ import division
#Variable decleration
r=5; #radius in m
pi=3.14;
#Calculation
SA=4*pi*r**2; #surface area of sphere in m^2
V=(4/3)*pi*r**3; #volume of sphere in m^3
R=SA/V; #ratio
#surface area to volume ratio can also be given by 3/radius
#Result
print("surface area to volume ratio of sphere in m-1 is",R);
#import modules
import math
from __future__ import division
#Variable decleration
d=26; #distance in m
r=d/2; #radius in m
pi=3.14;
#Calculation
SA=4*pi*r**2; #surface area of sphere in m^2
V=(4/3)*pi*r**3; #volume of sphere in m^3
R=SA/V; #ratio
R=math.ceil(R*10**3)/10**3; #rounding off to 3 decimals
#surface area to volume ratio can also be given by 3/radius
#Result
print("surface area to volume ratio of sphere in m-1 is",R);
#import modules
import math
from __future__ import division
#Variable decleration
r=1; #radius in m
h=1; #height in m
pi=3.14
#Calculation
V=(1/3)*pi*(r**2)*h;
V=math.ceil(V*10**2)/10**2; #rounding off to 2 decimals
#Result
print("volume of cone in m^3 is",V);
#import modules
import math
from __future__ import division
#Variable decleration
r=3; # radius in m
h=4; # height in m
pi=3.14
#Calculation
SA=pi*r*math.sqrt((r**2)+(h**2));
TSA=SA+(pi*r**2);
#Result
print("total surface area of cone in m^2 is",TSA);
#import modules
import math
from __future__ import division
#Variable decleration
V=100; #volume of cone in cubic inches
r=5; #radius of cone in inches
pi=3.14;
#Calculation
r_m=r*0.0254; #radius of cone in m
#volume V=(1/3)*pi*(r**2)*h
#therefore h = (3*V)/(pi*r**2)
h=(3*V)/(pi*r**2); #height in inches
R=3/r_m;
h=math.ceil(h*10**3)/10**3; #rounding off to 3 decimals
#Result
print("height of the cone in inches is",h);
print("surface area to volume ratio in m-1 is",R);
#answer for the surface area to volume ratio given in the book is wrong