#To calculate the Fermi energy
#importing modules
import math
#Variable declaration
m = 9.1*10**-31; #mass of electron
vf = 1*10**6; #Fermi velocity(m/s)
e = 1.6*10**-19; #conversion factor from J to eV
#Calculation
EF = m*(vf**2)/(2*e); #Fermi energy(eV)
EF=math.ceil(EF*10**2)/10**2; #rounding off to 2 decimals
#Result
print "Fermi energy is",EF,"eV"
#To calculate the Fermi energy
#importing modules
import math
#Variable declaration
EF0 = 7.04; #Fermi energy at 0K(eV)
T = 300; #temperature(K)
k = 1.38*10**-23; #boltzmann constant
e = 1.6*10**-19; #conversion factor from J to eV
#Calculation
EF = EF0*(1-(((math.pi**2)/12)*(k*T/(EF0*e))**2)); #Fermi energy(eV)
EF=math.ceil(EF*10**5)/10**5; #rounding off to 5 decimals
#Result
print "Fermi energy is",EF,"eV"
#To calculate the conductivity
#importing modules
import math
#Variable declaration
d = 2.7*10**3; #density of Al(kg/m**3)
Mat = 27; #atomic weight of Al
tow = 10**-14; #relaxation time(sec)
Na = 6.022*10**23; #avagadro constant
a = 3*10**3; #number of free electrons per atom
e = 1.6*10**-19; #charge of electron
me = 9.1*10**-31; #mass of electron
#Calculation
n = d*Na*a/Mat; #concentration of atoms(per m**3)
sigma = n*e**2*tow/me; #conductivity(ohm m)
sigma = sigma*10**-7;
sigma=math.ceil(sigma*10**4)/10**4; #rounding off to 4 decimals
#Result
print "conductivity of Al is",sigma,"*10**7 ohm m"
#To calculate the Lorentz number
#importing modules
import math
#Variable declaration
sigma = 5.87*10**7; #electrical conductivity(per ohm m)
K = 390; #thermal conductivity(W/mK)
T = 20; #temperature(C)
#Calculation
T = T+273; #temperature(K)
L = K/(sigma*T); #Lorentz number(W ohm/K**2)
#Result
print "Lorentz number is",L,"W ohm/K**2"
#To calculate the electrical conductivity
#importing modules
import math
#Variable declaration
d = 8900; #density of Cu(kg/m**3)
Mat = 63.5; #atomic weight of Cu
tow = 10**-14; #relaxation time(sec)
Na = 6.022*10**23; #avagadro constant
a = 1*10**3; #number of free electrons per atom
e = 1.6*10**-19; #charge of electron
me = 9.1*10**-31; #mass of electron
#Calculation
n = d*Na*a/Mat; #concentration of atoms(per m**3)
sigma = n*e**2*tow/me; #electrical conductivity(ohm m)
sigma = sigma*10**-7;
sigma=math.ceil(sigma*10**4)/10**4; #rounding off to 4 decimals
#Result
print "electrical conductivity is",sigma,"*10**7 ohm m"
#To calculate the relaxation time, mobility of electrons, average drift, velocity and mean free path
#importing modules
import math
#Variable declaration
rho = 1.54*10**-8; #resistivity(ohm m)
EF = 5.5; #fermi energy(eV)
me = 9.1*10**-31; #mass of electron
epsilon = 100;
e = 1.6*10**-19; #charge of electron
n = 5.8*10**28; #concentration of electrons(per m**3)
#Calculation
tow = me/(rho*n*e**2); #relaxation time(sec)
mew = e*tow/me; #mobility of electrons(m**2/Vs)
mew = mew*10**3;
vd = e*tow*epsilon/me; #drift velocity(m/s)
vd=math.ceil(vd*10)/10; #rounding off to 1 decimal
EF = EF*e; #fermi energy((J)
vF = math.sqrt(2*EF/me); #fermi velocity(m/s)
vf = vF*10**-6;
vf=math.ceil(vf*10**3)/10**3; #rounding off to 3 decimals
lamda_m = vF*tow; #mean free path(m)
#Result
print "relaxation time of electrons is",tow,"sec"
print "mobility of electrons is",mew,"*10**-3 m**2/Vs"
print "drift velocity of electrons is",vd,"m/s"
print "drift velocity given in the book is wrong"
print "fermi velocity of electrons is",vf,"*10**6 m/s"
print "mean free path is",lamda_m,"m"
#To calculate the thermal conductivity
#importing modules
import math
#Variable declaration
rho = 1.72*10**-8; #electrical resistivity(ohm m)
L = 2.26*10**-8; #Lorentz number(ohm W/K**2)
T = 27; #temperature(C)
#Calculation
T = T+273; #temperature(K)
K = L*T/rho; #thermal conductivity(W/mK)
#Result
print "thermal conductivity is",int(K),"W/mK"
#To calculate the Lorentz number
#importing modules
import math
#Variable declaration
sigma = 5.87*10**7; #electrical conductivity(per ohm m)
K = 390; #thermal conductivity(W/mK)
T = 20; #temperature(C)
#Calculation
T = T+273; #temperature(K)
L = K/(sigma*T); #Lorentz number(W ohm/K**2)
#Result
print "Lorentz number is",L,"W ohm/K**2"
#To calculate the value of F(E)
#importing modules
import math
#Variable declaration
E_EF = 0.01; #energy(eV)
e = 1.6*10**-19; #conversion factor from eV to J
T = 200; #temperature(K)
k = 1.38*10**-23; #boltzmann constant(J/K)
#Calculation
E_EF = E_EF*e; #energy(J)
A = E_EF/(k*T);
FofE = 1/(1+(math.exp(A))); #value of F(E)
FofE=math.ceil(FofE*10**2)/10**2; #rounding off to 2 decimals
#Result
print "value of F(E) is",FofE
#To calculate the electrical conductivity
#importing modules
import math
#Variable declaration
lamda = 4*10**-8; #mean free path(m)
n = 8.4*10**28; #density(per m**3)
vthbar = 1.6*10**6; #average thermal velocity(m/s)
e = 1.6*10**-19; #charge of electron(c)
m = 9.11*10**-31; #mass of electron
#Calculation
sigma = n*e**2*lamda/(m*vthbar); #electrical conductivity(ohm-1 m-1)
sigma = sigma*10**-7;
sigma=math.ceil(sigma*100)/100; #rounding off to 2 decimals
#Result
print "electrical conductivity is",sigma,"*10**7 ohm-1 m-1"
#To calculate the electrical,thermal conductivity and Lorentz number
#importing modules
import math
#Variable declaration
tow = 10**-14; #relaxation time(sec)
T = 300; #temperature(K)
n = 6*10**28; #electron concentration(per m**3)
e = 1.6*10**-19; #charge of electron(c)
me = 9.1*10**-31; #mass of electron
k = 1.38*10**-23; #boltzmann constant(J/K)
#Calculation
sigma = n*e**2*tow/me; #electrical conductivity(ohm-1 m-1)
sigmaa = sigma*10**-7;
sigmaa=math.ceil(sigmaa*100)/100; #rounding off to 2 decimals
K = 3*n*(k**2)*tow*T/(2*me); #thermal conductivity(W/mK)
K=math.ceil(K*10)/10; #rounding off to 1 decimal
L = K/(sigma*T); #Lorentz number(W ohm/K**2)
#Result
print "electrical conductivity is",sigmaa,"*10**7 ohm-1 m-1"
print "thermal conductivity is",K,"W/mK"
print "Lorentz number is",L,"W ohm/K**2"
print "answer for thermal conductivity and Lorentz number given in the book are wrong"
#To calculate the relaxation time
#importing modules
import math
#Variable declaration
n = 5.8*10**28; #electron concentration(per m**3)
e = 1.6*10**-19; #charge of electron(c)
m = 9.1*10**-31; #mass of electron
rho = 1.54*10**-8; #resistivity of metal(ohm m)
#Calculation
tow = m/(n*rho*e**2); #relaxation time(sec)
#Result
print "relaxation time is",tow,"sec"
print "answer given in the book is wrong"
#To calculate the relaxation time, mobility of electrons, drift velocity
#importing modules
import math
#Variable declaration
rho = 1.54*10**-8; #resistivity(ohm m)
E = 1; #electric field(V/cm)
me = 9.1*10**-31; #mass of electron
e = 1.6*10**-19; #charge of electron
n = 5.8*10**28; #concentration of electrons(per m**3)
#Calculation
E = E*10**2; #electric field(V/m)
tow = me/(rho*n*e**2); #relaxation time(sec)
vd = e*E*tow/me; #drift velocity(m/s)
vd=math.ceil(vd*10)/10; #rounding off to 1 decimal
mew = vd/E; #mobility of electrons(m**2/Vs)
mew = mew*10**2;
#Result
print "relaxation time of electrons is",tow,"sec"
print "drift velocity of electrons is",vd,"m/s"
print "mobility of electrons is",mew,"*10**-2 m**2/Vs"
#To calculate the drift velocity
#importing modules
import math
#Variable declaration
T = 300; #temperature(K)
l = 2; #length of wire(m)
R = 0.02; #resistance(ohm)
I = 15; #current(amp)
mew = 4.3*10**-3; #mobility(m**2/Vs)
#Calculation
V = I*R; #voltage drop(V)
E = V/l; #electric field(V/m)
vd = mew*E; #drift velocity(m/s)
vd = vd*10**3;
vd=math.ceil(vd*100)/100; #rounding off to 2 decimals
#Result
print "drift velocity of electrons is",vd,"*10**-3 m/s"
#To calculate the Fermi energy and Fermi temperature
#importing modules
import math
#Variable declaration
vf = 0.86*10**6; #fermi velocity(m/s)
m = 9.1*10**-31; #mass of electron(kg)
e = 1.6*10**-19; #charge of electron(C)
k = 1.38*10**-23; #boltzmann constant
#Calculation
EF = m*vf**2/(2*e); #fermi energy(eV)
EF=math.ceil(EF*100)/100; #rounding off to 2 decimals
TF = EF*e/k; #fermi temperature(K)
#Result
print "Fermi energy is",EF,"eV"
print "Fermi temperature is",int(TF),"K"
print "answer for fermi temperature given in the book is wrong due to rounding off the value of EF"
#To calculate the Fermi velocity
#importing modules
import math
#Variable declaration
TF = 2460; #fermi temperature(K)
m = 9.11*10**-31; #mass of electron(kg)
k = 1.38*10**-23; #boltzmann constant
#Calculation
vF = math.sqrt(2*k*TF/m); #fermi velocity(m/s)
vF = vF*10**-5;
vF=math.ceil(vF*10**3)/10**3; #rounding off to 3 decimals
#Result
print "Fermi velocity is",vF,"*10**5 m/s"