#To calculate the approximate donor binding energy
#importing modules
import math
#Variable declaration
me = 9.11*10**-31; #mass of electron(kg)
epsilon_r = 13.2;
epsilon0 = 8.85*10**-12;
h = 6.63*10**-34;
e = 1.6*10**-19; #charge of electron(C)
#Calculation
m_nc = 0.067*me;
E = m_nc*e**4/(8*(epsilon0*epsilon_r*h)**2); #energy(J)
E = E/e; #energy(eV)
E = math.ceil(E*10**5)/10**5; #rounding off to 5 decimals
E_meV = E*10**3; #energy(meV)
#Result
print "donor binding energy is",E,"eV or",E_meV,"meV"
#To calculate the equilibrium hole concentration
#importing modules
import math
import numpy as np
#Variable declaration
Nd = 10**16; #donor concentration(atoms/cm**3)
ni = 1.5*10**10; #concentration(per cm**3)
T = 300; #temperature(K)
kT = 0.0259;
#Calculation
n0 = Nd; #for Nd>>ni, assume n0=Nd
p0 = ni**2/n0; #equilibrium hole concentration(per cm**3)
p0 = p0*10**-4;
EF_Ei = kT*np.log(n0/ni);
EF_Ei = math.ceil(EF_Ei*10**4)/10**4; #rounding off to 4 decimals
#Result
print "equilibrium hole concentration is",p0,"*10**4 per cm**3"
print "value of EF-Ei is",EF_Ei,"eV"
#To calculate the resistivity of sample
#importing modules
import math
#Variable declaration
e = 1.6*10**-19; #charge of electron(C)
Nd = 10**14; #donor density(atoms/cm**3)
mew_n = 3900;
#Calculation
n = Nd;
sigma = n*e*mew_n; #conductivity(ohm-1 cm-1)
rho = 1/sigma; #resistivity(ohm cm)
rho = math.ceil(rho*100)/100; #rounding off to 2 decimals
#Result
print "resistivity of sample is",rho,"ohm cm"
#To calculate the resistivity, Hall coefficient and Hall voltage
#importing modules
import math
#Variable declaration
e = 1.6*10**-19; #charge of electron(C)
n0 = 5*10**16; #donor density(atoms/cm**3)
mew_0 = 800;
Ix = 2; #current(mA)
Bz = 5*10**-5;
d = 200; #thickness(micrometre)
#Calculation
Ix = Ix*10**-3; #current(A)
d = d*10**-4; #thickness(m)
sigma = e*n0*mew_0; #conductivity(ohm-1 cm-1)
rho = 1/sigma; #resistivity(ohm cm)
rho = math.ceil(rho*10**4)/10**4; #rounding off to 4 decimals
RH = -1/(e*n0); #Hall coefficient(cm**3/C)
VH = Ix*Bz*RH/d; #Hall voltage(V)
VH = VH*10**5;
#Result
print "resistivity of sample is",rho,"ohm cm"
print "Hall coefficient is",RH,"cm**3/C"
print "Hall voltage is",VH,"*10**-5 V"
#To calculate the intrinsic carrier concentration, intrinsic conductivity and resistivity
#importing modules
import math
from __future__ import division
#Variable declaration
T = 300; #temperature(K)
mew_n = 0.4; #electron mobility(m**2/Vs)
mew_p = 0.2; #hole mobility(m**2/Vs)
Eg = 0.7; #band gap(eV)
me = 9.11*10**-31; #mass of electron(kg)
k = 1.38*10**-23; #boltzmann constant
T = 300; #temperature(K)
h = 6.625*10**-34;
kT = 0.0259;
e = 1.6*10**-19; #charge of electron(C)
#Calculation
mn_star = 0.55*me; #electron effective mass(kg)
mp_star = 0.37*me; #hole effective mass(kg)
a = (2*math.pi*k*T/(h**2))**(3/2);
b = (mn_star*mp_star)**(3/4);
c = math.exp(-Eg/(2*kT));
ni = 2*a*b*c; #intrinsic concentration(per m**3)
sigma = ni*e*(mew_n+mew_p); #intrinsic conductivity(per ohm m)
sigma = math.ceil(sigma*10**4)/10**4; #rounding off to 4 decimals
rho = 1/sigma; #intrinsic resistivity(ohm m)
rho = math.ceil(rho*10**4)/10**4; #rounding off to 4 decimals
#Result
print "intrinsic concentration is",ni,"per m**3"
print "intrinsic conductivity is",sigma,"per ohm m"
print "intrinsic resistivity is",rho,"ohm m"
print "answers given in the book are wrong"
#To calculate the Fermi energy
#importing modules
import math
import numpy as np
from __future__ import division
#Variable declaration
Nd = 10**16; #donor concentration(per cm**3)
ni = 1.45*10**10; #concentration(per cm**3)
kT = 0.0259;
#Calculation
#ni = Nc*math.exp(-(Ec-Ei)/kT)
#Nd = Nc*(math.exp(-(Ec-Efd)/kT)
#dividing Nd/ni we get
EFd_Ei = kT*np.log(Nd/ni);
EFd_Ei = math.ceil(EFd_Ei*10**4)/10**4; #rounding off to 4 decimals
#Result
print "Fermi energy is",EFd_Ei,"eV"
#To calculate the resistance
#The given information in the question is not sufficient to solve the entire problem. And the problem is completely wrong in the book
#To calculate the forbidden energy gap
#importing modules
import math
import numpy as np
from __future__ import division
#Variable declaration
T = 300; #temperature(K)
mew_n = 0.36; #electron mobility(m**2/Vs)
mew_p = 0.17; #hole mobility(m**2/Vs)
rho = 2.12; #resistivity(ohm m)
me = 9.11*10**-31; #mass of electron(kg)
kT = 0.0259;
h = 6.625*10**-34;
k = 1.38*10**-23; #boltzmann constant
e = 1.6*10**-19; #charge of electron(C)
#Calculation
mn_star = 0.55*me; #electron effective mass(kg)
mp_star = 0.37*me; #hole effective mass(kg)
sigma = 1/rho; #conductivity(per ohm m)
sigma = math.ceil(sigma*10**3)/10**3; #rounding off to 3 decimals
ni = sigma/(e*(mew_n+mew_p)); #concentration of electrons(per m**3)
a = (2*math.pi*kT/(h**2))**(3/2);
Nc = 2*a*(mn_star**(3/2));
Nv = 2*a*(mp_star**(3/2));
b = (Nc*Nv)**(1/2);
Eg = 2*kT*np.log(b/ni);
#Result
print "forbidden energy gap is",Eg,"eV"
print "answer given in the book is wrong"
#To calculate the conductivity
#importing modules
import math
#Variable declaration
ni = 2.4*10**19; #concentration(per m**3)
mew_n = 0.39; #electron mobility(m**2/Vs)
mew_p = 0.19; #hole mobility(m**2/Vs)
e = 1.6*10**-19; #charge of electron(C)
#Calculation
sigma = ni*e*(mew_n+mew_p); #conductivity(per ohm m)
sigma = math.ceil(sigma*10**3)/10**3; #rounding off to 3 decimals
#Result
print "conductivity of sample is",sigma,"ohm-1 m-1"
#To calculate the new position of Fermi level
#importing modules
import math
from __future__ import division
#Variable declaration
Ec = 0.3; #initial position(eV)
T1 = 300; #initial temperature(K)
T2 = 330; #increased temperature
#Calculation
#Ec/T1 = Ec_EF330/T2
Ec_EF330 = Ec*T2/T1; #new position of Fermi level(eV)
#Result
print "new position of Fermi level is",Ec_EF330,"eV"
#To calculate the concentration in conduction band
#importing modules
import math
from __future__ import division
#Variable declaration
k = 1.38*10**-23; #boltzmann constant
T = 300; #temperature(K)
me = 9.1*10**-31; #mass of electron(kg)
h = 6.63*10**-34; #planck's constant
Ec_Ev = 1.1; #energy gap(eV)
e = 1.6*10**-19; #charge of electron(C)
#Calculation
me_star = 0.31*me;
A = (2*math.pi*k*T*me_star/(h**2))**(3/2);
B = math.exp(-(Ec_Ev*e)/(2*k*T));
ni = A*B; #concentration in conduction band(per m**3)
#Result
print "intrinsic electron concentration is",ni,"per m**3"
print "answer given in the book is wrong"
#To calculate the drift mobility of electrons
#importing modules
import math
#Variable declaration
RH = 0.55*10**-10; #Hall coefficient(m**3/As)
sigma = 5.9*10**7; #conductivity(ohm-1 m-1)
#Calculation
mew = RH*sigma; #drift mobility(m**2/Vs)
mew = mew*10**3;
mew = math.ceil(mew*10**2)/10**2; #rounding off to 2 decimals
#Result
print "drift mobility of electrons is",mew,"*10**-3 m**2/Vs"
#To calculate the concentration and average number of electrons
#importing modules
import math
from __future__ import division
#Variable declaration
A = 6.022*10**23; #avagadro constant
d = 8.96*10**-9; #density(kg/m**3)
n = 9.932*10**14; #no. of free electrons per atom
sigma = 5.9*10**7; #conductivity(ohm-1 m-1)
e = 1.6*10**-19; #electron charge(C)
mew = 3.2*10**-3; #drift mobility(m**2/Vs)
w = 63.5; #atomic weight of Cu(kg)
#Calculation
ni = sigma/(mew*e); #conductivity(per m**3)
N = A*d*n/w; #concentration of free electrons in pure Cu
AN = ni/N; #average number of electrons contributed per Cu atom
#Result
print "concentration of free electrons in pure Cu is",N,"per m**3"
print "average number of electrons contributed per Cu atom is",int(AN)
#To calculate the charge carrier density and electron mobility
#importing modules
import math
from __future__ import division
#Variable declaration
RH = 3.66*10**-11; #hall coefficient(m**3/As)
e = 1.6*10**-19; #electron charge(C)
sigma = 112*10**7; #conductivity(ohm-1 m-1)
#Calculation
n = 1/(e*RH); #charge carrier density(per m**3)
mew_n = sigma/(n*e); #electron mobility(m**2/As)
mew_n = math.ceil(mew_n*10**3)/10**3; #rounding off to 3 decimals
#Result
print "charge carrier density is",n,"per m**3"
print "electron mobility is",mew_n,"m**2/As"
print "answers given in the book are wrong"
#To calculate the magnitude of Hall voltage
#importing modules
import math
from __future__ import division
#Variable declaration
e = 1.6*10**-19; #electron charge(C)
B = 1.5; #magnetic field(T)
I = 50; #current(Amp)
n = 8.4*10**28; #free electron concentration(per m**3)
d = 0.2; #thickness of slab(cm)
#Calculation
d = d*10**-2; #thickness of slab(m)
VH = B*I/(n*e*d); #hall voltage(V)
#Result
print "magnitude of Hall voltage is",VH,"V"
print "answer given in the book is wrong"
#To calculate the resistance of intrinsic Ge rod
#importing modules
import math
from __future__ import division
#Variable declaration
e = 1.6*10**-19; #electron charge(C)
n = 2.5*10**19; #free electron concentration(per m**3)
mew_n = 0.39; #electron mobility(m**2/Vs)
mew_p = 0.19; #hole mobility(m**2/Vs)
L = 1; #length(cm)
w = 1; #width(mm)
t = 1; #thickness(mm)
#Calculation
L = L*10**-2; #length(m)
w = w*10**-3; #width(m)
t = t*10**-3; #thickness(m)
A = w*t; #area(m**2)
sigma = n*e*(mew_n+mew_p); #conductivity(ohm-1 m-1)
R = L/(sigma*A); #resistance(ohm)
#Result
print "resistance of intrinsic Ge rod is",int(R),"ohm"
#To determine the position of Fermi level
#importing modules
import math
import numpy as np
from __future__ import division
#Variable declaration
e = 1.6*10**-19; #electron charge(C)
Eg = 1.12; #band gap(eV)
me = 1;
mn_star = 0.12*me; #electron mobility(m**2/Vs)
mp_star = 0.28*me; #hole mobility(m**2/Vs)
k = 1.38*10**-23; #boltzmann constant
T = 300; #temperature
#Calculation
a = mp_star/mn_star;
EF = (Eg/2)+((3*k*T/(4*e))*np.log(a));
EF = math.ceil(EF*10**3)/10**3; #rounding off to 3 decimals
#Result
print "position of Fermi level is",EF,"eV"
#To calculate the electrical conductivity
#importing modules
import math
#Variable declaration
e = 1.6*10**-19; #electron charge(C)
ni = 1.5*10**16; #intrinsic carrier density(per m**3)
mew_n = 0.13; #electron mobility(m**2/Vs)
mew_p = 0.05; #hole mobility(m**2/Vs)
#Calculation
sigma = ni*e*(mew_n+mew_p); #electrical conductivity
sigma = sigma*10**4;
#Result
print "electrical conductivity is",sigma,"*10**-4 ohm-1 m-1"
#To calculate the intrinsic resistivity
#importing modules
import math
from __future__ import division
#Variable declaration
e = 1.6*10**-19; #electron charge(C)
ni = 2.15*10**-13; #intrinsic carrier density(per cm**3)
mew_n = 3900; #electron mobility(cm**2/Vs)
mew_p = 1900; #hole mobility(cm**2/Vs)
#Calculation
sigmai = ni*e*(mew_n+mew_p); #electrical conductivity(ohm-1 cm-1)
rhoi = 1/sigmai; #intrinsic resistivity(ohm cm)
#Result
print "intrinsic resistivity is",rhoi,"ohm cm"
print "answer given in the book is wrong"
#To calculate the electrical conductivity
#importing modules
import math
#Variable declaration
e = 1.6*10**-19; #electron charge(C)
ni = 2.1*10**19; #intrinsic carrier density(per m**3)
mew_n = 0.4; #electron mobility(m**2/Vs)
mew_p = 0.2; #hole mobility(m**2/Vs)
#Calculation
sigma = ni*e*(mew_n+mew_p); #electrical conductivity
#Result
print "intrinsic resistivity is",sigma,"ohm-1 m-1"
#To calculate the Hall coefficient and electron mobility
#importing modules
import math
#Variable declaration
e = 1.6*10**-19; #electron charge(C)
V = 1.35; #voltage supply(V)
I = 5; #current(mA)
b = 5; #breadth(mm)
d = 1; #thickness(mm)
L = 1; #length(cm)
H = 0.45; #magnetic field(Wb/m**2)
Vy =20; #Hall voltage(mV)
#Calculation
Vy = Vy*10**-3; #Hall voltage(V)
L = L*10**-2; #length(m)
d = d*10**-3; #thickness(m)
b = b*10**-3; #breadth(m)
I = I*10**-3; #current(A)
R = V/I; #resistance(ohm)
A = b*d; #area(m**2)
rho = R*A/L; #resistivity(ohm m)
Ey = Vy/d; #Hall field(V/m)
Jx = I/A;
a = Ey/(H*Jx); #current density(m**3/C).Here a is 1/ne
RH = a; #Hall coefficient(m**3/C)
RH = math.ceil(RH*10**4)/10**4; #rounding off to 4 decimals
mew_n = RH/rho; #electron mobility(m**2/Vs)
mew_n = math.ceil(mew_n*10**2)/10**2; #rounding off to 2 decimals
#Result
print "Hall coefficient is",RH,"m**3/C"
print "electron mobility is",mew_n,"m**2/Vs"
#To calculate the Hall potential difference
#importing modules
import math
#Variable declaration
e = 1.6*10**-19; #electron charge(C)
Ix = 200; #current(A)
Bz = 1.5; #magnetic field(Wb/m**2)
p = 8.4*10**28; #electron concentration(per m**3)
d = 1; #thickness(mm)
#Calculation
d = d*10**-3; #thickness(m)
VH = Ix*Bz/(e*p*d); #Hall potential(V)
VH = VH*10**6; #Hall potential(micro V)
#Result
print "Hall potential is",int(VH),"micro V"