#importing modules
import math
from __future__ import division
#Variable declaration
ni=2.1*10**19; #intrinsic charge carriers(m^-3)
me=0.4; #electron mobility(m^2 V^-1 s^-1)
mh=0.2; #hole mobility(m^2 V^-1 s^-1)
d=4.5*10**23; #density of boron(m^-3)
e=1.6*10**-19; #charge of electron(c)
#Calculation
C=ni*e*(me+mh); #conductivity before adding boron atoms(ohm^-1 m^-1)
c=d*e*mh; #conductivity after adding boron atoms(ohm^-1 m^-1)
#Result
print "Before adding boron atoms,the semiconductor is an intrinsic semiconductor"
print "conductivity before adding boron atoms is",C,"ohm^-1 m^-1"
print "After adding boron atoms,the semiconductor becomes a P-type semiconductor"
print "conductivity after adding boron atoms is",c/10**4,"*10**4 ohm^-1 m^-1"
#importing modules
import math
from __future__ import division
#Variable declaration
ni=1.5*10**16; #intrinsic charge carriers(m^-3)
me=1300*10**-4; #electron mobility(m^2 V^-1 s^-1)
mh=500*10**-4; #hole mobility(m^2 V^-1 s^-1)
c=3*10**4; #conductivity of n-tpye silicon(ohm^-1 m^-1)
e=1.6*10**-19; #charge of electron(c)
#Calculation
ne=c/(e*me); #DensiTy of electrons in n-type silicon(electrons/m^3)
nh=ni**2/ne; #Density of holes in n-type silicon(holes/m^3)
Ne=c/(e*mh); #Density of holes in p-type silicon(holes/m^3)
Nh=ni**2/Ne; #Density of electrons in p-type silicon(holes/m^3)
#Result
print "DensiTy of electrons in n-type silicon is",round(ne/10**24,4),"*10**24 electrons/m^3"
print "DensiTy of holes in n-type silicon is",nh/10**8,"*10**8 holes/m^3"
print "DensiTy of holes in p-type silicon is",Ne,"holes/m^3"
print "DensiTy of electrons in p-type silicon is",Nh/10**7,"*10**7 electrons/m^3"
#importing modules
import math
from __future__ import division
#Variable declaration
ni=2*10**16; #intrinsic charge carriers(m^-3)
Na=5*10**23; #density of acceptor concentration of silicon with arsenic(atoms)
Nd=3*10**23; #density of donor concentration of silicon with arsenic(atoms)
#Calculation
nh=Na-Nd; #density of hole(m^-3)
ne=ni**2/nh; #The electron concentration(electrons/m^3)
#Result
print "The electron concentration is",ne/10**9,"*10**9 electrons/m^3"
#importing modules
import math
from __future__ import division
#Variable declaration
d=5*10**28; #density of silicon atom(atoms/m^3)
nd=2.5*10**7; #donor concentration in 1 atom per si atom
T=300; #Temperature(K)
Eg=1.1*1.6*10**-19; #Eg for silicon(eV)
kb=1.38*10**-23; #Boltzmann's Constant(m^2 Kg s^-2 k^-1)
m=9.11*10**-31; #mass of electon(kg)
h=6.625*10**-34; #plank's constant(m^2 Kg/sec)
#Calculation
Nd=d/nd; #The donor concentration(atoms/m^3)
Ef=(Eg/2)+(kb*T*(math.log(Nd/(2*((2*math.pi*m*kb*T)/h**2)**(3/2))))); #The position of fermi level at 300K(J)
#Result
print "The position of fermi level is",round(Ef*10**20,3),"*10**-20 J or",round(Ef/(1.6*10**-19),4),"eV"
#importing modules
import math
from __future__ import division
#Variable declaration
ni=1.5*10**16; #intrinsic charge carriers(m^-3)
r1=10*10**-2; #resistivity of p-type silicon(ohm m)
r2=10*10**-2; #resistivity of n-type silicon(ohm m)
me=1350*10**-4; #The mobility of the charge carrier(m^2 V^-1 s^-1)
mh=480*10**-4; #The hole charge carrier(m^2 V^-1 s^-1)
e=1.6*10**-19; #charge of electron(c)
#Calculation
Na=1/(r1*e*mh); #The density of the intrinsic crystal for p-type(m^-3)
ne=ni**2/Na; #The minor carrier concentration for p-type(electrons/m^3)
Nd=1/(r2*e*me); #The density of the intrinsic crystal for n-type(m^-3)
nh=ni**2/Nd; #The minor carrier concentration for n-type(electrons/m^3)
#Result
print "The density of the intrinsic crystal for p-type is",round(Na/10**21,3),"*10**21 m^-3"
print "The minor carrier concentration for p-type is",ne,"electrons/m^3"
print "The density of the intrinsic crystal for n-type is",round(Nd/10**20,4),"*10**20 m^-3"
print "The minor carrier concentration for n-type is",nh,"holes/m^3"
#importing modules
import math
from __future__ import division
#Variable declaration
c=112; #conductivity of a n-type silicon specimen(ohm^-1 m^-1)
RH=1.25*10**-3; #Hall coefficient of a n-type silicon specimen(m^3 C^-1)
e=1.6*10**-19; #charge of electron(c)
#Calculation
me=c*RH; #electron mobility(m^2 V^-1 s^-1)
ne=c/(me*e); #The charge carrier density(electrons/m^3)
#Result
print "The electron mobility is",me,"m^2 V^-1 s^-1"
print "The charge carrier density is",ne,"electrons/m^3"
#importing modules
import math
from __future__ import division
#Variable declaration
l=12*10**-3; #length of semi conductor crystal(m)
b=1*10**-3; #breadth of semi conductor crystal(m)
t=1*10**-3; #thickness of semi conductor crystal(m)
I=20*10**-3; #current(A)
Vh=37*10**-6; #voltage measured across the width(V)
B=0.5; #magnetic flux density(Wb/m^2)
e=1.6*10**-19; #charge of electron(c)
#Calculation
RH=Vh*t/(I*B); #Hall coefficient of semiconductor(C^-1 m^3)
ne=1/(RH*e); #The density of the charge carrier(electrons/m^3)
#Result
print "Hall coefficient of semiconductor is",RH,"C^-1 m^3"
print "The density of the charge carrier is",round(ne/10**24,3),"*10**24 electrons/m^3"
#importing modules
import math
from __future__ import division
#Variable declaration
l=100*10**-3; #length of silicon plate(m)
b=10*10**-3; #breadth of silicon plate(m)
t=1*10**-3; #thickness of silicon plate(m)
I=10**-2; #current(A)
Vh=1.83*10**-3; #voltage measured across the width(V)
B=0.5; #magnetic flux density(Wb/m^2)
#Calculation
RH=Vh*t/(I*B); #Hall coefficient of silicon plate(m^3 C^-1)
#Result
print "Hall coefficient of silicon plate is",RH*10**4,"*10**-4 m^3 C^-1"
#importing modules
import math
from __future__ import division
#Variable declaration
RH=7.35*10**-5; #Hall coefficient of silicon specimen(m^3 C^-1)
rh=-7.35*10**-5; #Hall coefficient of silicon specimen(m^3 C^-1)
c=200; #conductivity(ohm^-1 m^-1)
e=1.6*10**-19; #charge of electron(c)
#Calculation
ne=1/(RH*e); #The density of the charge carrier(electrons/m^3)
me=c*RH; #The mobility of the charge carrier(m^2 V^-1 s^-1)
#Result
print "The negative sign of the Hall coefficient indicates that the nature of the semiconductor is n-type"
print "The density of the charge carrier is",round(ne/10**22,3),"*10**22 electrons/m^3"
print "The mobility of the charge carrier is",me*10**3,"*10**-3 m^2 V^-1 s^-1"
#importing modules
import math
from __future__ import division
#Variable declaration
RH=4.16*10**-4; #Hall coefficient of n-type semiconductor(m^3 C^-1)
c=180; #conductivity(ohm^-1 m^-1)
e=1.6*10**-19; #charge of electron(c)
x=1.18; #correction factor for RH
#Calculation
ne=x/(RH*e); #The density of the charge carrier(electrons/m^3)
me=c/(ne*e); #The mobility of the charge carrier(m^2 V^-1 s^-1)
#Result
print "The density of the charge carrier is",round(ne/10**22,4),"*10**22 electrons/m^3"
print "The mobility of the charge carrier is",round(me,5),"m^2 V^-1 s^-1"
print "answer given in the book is wrong"
#importing modules
import math
from __future__ import division
#Variable declaration
l=1*10**-3; #length of rectangular plane sheet of doped silicon(m)
b=1*10**-3; #breadth of semi rectangular plane sheet of doped silicon(m)
t=0.5*10**-3; #thickness of rectangular plane sheet of doped silicon(m)
RH=1.25*10**-3; #Hall coefficient of the material(m^3 C^-1)
I=1*10**-3; #current(A)
B=0.7; #magnetic flux density(Wb/m^2)
e=1.6*10**-19; #charge of electron(c)
#Calculation
Vh=RH*I*B/t; #The hall coefficient measured by the probes(mV)
#Result
print "The hall coefficient measured by the probes is",Vh*10**3,"mV"
#importing modules
import math
from __future__ import division
#Variable declaration
RH=3.66*10**-4; #Hall coefficient of a doped silicon(m^3 C^-1)
r=8.93*10**-3; #The resistivity(ohm m)
e=1.6*10**-19; #charge of electron(c)
#Calculation
n=1/(RH*e); #The density of the charge carrier(m^-3)
me=RH/r; #The mobility(m^2 V^-1 s^-1)
#Result
print "The density of the charge carrier is",round(n/10**22,5),"*10**22 m^-3"
print "The mobility is",round(me,5),"m^2 V^-1 s^-1"
#importing modules
import math
from __future__ import division
#Variable declaration
RH=0.0125; #Hall coefficient of a sample n-type semiconductor(m^3 C^-1)
rh=-0.0125; #Hall coefficient of a sample n-type semiconductor(m^3 C^-1)
me=0.36; #electron mobility(m^2 V^-1 s^-1)
EH=100; #electric field(V/m)
e=1.6*10**-19; #charge of electron(c)
#Calculation
n=1/(RH*e); #The density of the charge carrier(m^-3)
c=n*e*me; #conductivity of n-type semiconductor(ohm^-1 m^-1)
J=c*EH; #The current density(A/m^2)
#Result
print "The current density is",J,"A/m^2"