#importing modules
import math
from __future__ import division
#Variable declaration
n=5.9*10**28; #electron concentration of conductor(m^-3)
v=0.625; #drift velocity of a conductor(ms^-1)
x=6.22*10**7; #electrical conductivity(ohm^-1 m^-1)
e=1.6*10**-19; #charge of electron(c)
#Calculation
J=n*e*v; #current density in the conductor corresponds to drift velocity(Am^-1)
z=x/(n*e); #mobility of the charge(m^2V^-1s^-1)
#Result
print "The current density in the conductor corresponds to a drift velocity is",J/10**9,"*10**9 A m^-1"
print "Mobility of the charge carrires is",round(z*10**3,5),"*10**-3 m^2 V^-1 s^-1"
#importing modules
import math
from __future__ import division
#Variable declaration
n=8.5*10**28; #density of free electrons in copper(m^-3)
A=1.05*10**-6; #sectional area of copper(m^2)
e=1.6*10**-19; #charge of electron(c)
I=1; #copper wire carries a current(A)
#Calculation
V=1/(A*n*e); #drift velocity of free electrons in copper wire(ms^-1)
#Result
print "The drift velocity of free electron in a copper wire is",round(V*10**5,4),"*10**-5 ms^-1"
#importing modules
import math
from __future__ import division
#Variable declaration
X=3.5*10**-3; #mobility of free electrons in copper(m^2 V^-1 s^-1)
E=0.5; #elactric field strength of copper(V m^-1)
#Calculation
V=X*E; #drift velocity of free electrons in copper(m s^-1)
#Result
print "The drift velocity of free electrons in copper is",V*10**3,"*10**-3 ms^-1"
#importing modules
import math
from __future__ import division
#Variable declaration
n=6.5*10**28; #conduction electron(m^-3)
r=1.435*10**-8; #metal resistivity(ohm-metre)
e=1.6*10**-19; #charge of electron(c)
m=9.11*10**-31; #mass of a electron(kg)
#Calculation
T=m/(r*n*e**2); #relaxation time of conduction electrons(s)
#Result
print "The relaxation time of conduction electrons is",round(T*10**14,3),"*10**-14 s"
#importing modules
import math
from __future__ import division
#Variable declaration
r=1.72*10**-8; #resistivity of copper(ohm metre)
T=293; #temperature of copper(K)
n=8.48*10**28; #density of free electron(m^-3)
e=1.6*10**-19; #charge of electron(c)
m=9.11*10**-31; #mass of a electron(kg)
k=1.38*10**-23; #boltzmann constant(m^2 Kg s^-2 k^-1)
#Calculation
t=m/(r*n*(e**2)); #relaxation time(s)
v=math.sqrt(3*k*T/m); #thermal velocity(ms^-1)
Lamda=t*v; #mean free path between collision of free electrons in copper(m)
#Result
print "The mean free path between collision of free electrons in copper is",round(Lamda*10**9,4),"*10**-9 m"
print "answer varies due to rounding off errors"
#importing modules
import math
from __future__ import division
#Variable declaration
t=1*10**-3; #thickness of metal(m)
V=1; #potential difference applied in volts(V)
T=300; #temperature(K)
m=0.04; #mobility(m^2 V^-1 s^-1)
k=1.38*10**-23; #boltzmann constant(m^2 Kg s^-2 k^-1)
m1=9.11*10**-31; #mass of a electron(kg)
#Calculation
v=math.sqrt(3*k*T/m1); #thermal velocity(ms^-1)
E=V/t; #unit potenyial voltage gradient(V m^-1)
vd=E*m; #drift velocity of electrons(m s^-1)
#Result
print "The thermal velocity is",round(v/10**3,2),"*10**3 m s^-1"
print "Drift velocity of electrons is",vd,"m s^-1"
print "Thus the terminal velocity is high compared to the drift velocity"
#importing modules
import math
from __future__ import division
#Variable declaration
AW=63.5; #atomic weight of copper
D=8.93*10**3; #density of copper(kg m^-3)
t=2.48*10**-14; #relaxation time of copper(s)
AV=6.023*10**26; #avagadro no(mole^-1)
e=1.6*10**-19; #charge of electron(c)
m=9.11*10**-31; #mass of a electron(kg)
#Calculation
n=AV*D/AW; #density of electrons per unit volume(m^-3)
sigma=n*e**2*t/m; #electrical conductivity of copper(Sm^-1)
#Result
print "The electrical conductivity of copper is",round(sigma/10**7,1),"*10**7 S m^-1"
print "answer varies due to rounding off errors"
#importing modules
import math
from __future__ import division
#Variable declaration
I=10; #current(A)
r=0.8*10**-2; #radius of wire(m)
n=8.48*10**28; #density of free electron(m^-3)
e=1.6*10**-19; #charge of electron(c)
#Calculation
J=I/(math.pi*r**2); #current density of copper(Am^-2)
v=J/(n*e); #drift velocity of copper(ms^-1)
#Result
print "The drift velocity in copper is",round(v*10**6,4),"*10**-6 ms^-1"
print "The current density in copper is",round(J/10**4,4),"*10**4 Am^-2"
print "answer varies due to rounding off errors"
#importing modules
import math
from __future__ import division
#Variable declaration
r=1.54*10**-8; #resistivity of silver wire at room temperature(ohm metre)
E=100; #Electric field along the wire(V/m)
n=5.8*10**28; #n is assuming of conduction electrons(m^-3)
e=1.6*10**-19; #charge of electron(c)
#Calculation
mew=1/(r*n*e); #mobility of charge(m^2 V^-1 s^-1)
vd=mew*E; #drift velocity of electrons(m s^-1)
#Result
print "The mobility of charge is",round(mew*10**3,3),"*10**-3 m^2 V^-1 s^-1"
print "The drift velocity of electrons is",round(vd,4),"m s^-1"
#importing modules
import math
from __future__ import division
#Variable declaration
D=8.92*10**3; #density of copper(kg m^-3)
AW=63.5; #atomic weight of copper
r=1.73*10**-8; #resistivity of copper(ohm metre)
AV=6.023*10**26; #avagadro no(mole^-1)
e=1.6*10**-19; #charge of electron(c)
m=9.11*10**-31; #mass of a electron(kg)
#Calculation
n=AV*D/AW; #density of electrons per unit volume(m^-3)
tow=m/(r*n*e**2); #average time collision of electrons in copper(s)
mew=1/(r*n*e); #mobility of charge(m^2 V^-1 s^-1)
#Result
print "The relaxation time collision of electrons in copper obeying classical laws is",round(tow*10**14,2),"*10**-14 s"
print "The mobility charge of copper obeying classical laws is",round(mew*10**2,3),"*10**-2 m^2 V^-1 s^-1"
#importing modules
import math
from __future__ import division
#Variable declaration
r=1.85*10**-10; #the radius of sodium atom(m)
t=3*10**-14; #the classic value of mean free time(sec)
temp=0; #temperature(centigrade)
na=2; #number of atoms in a unit cell
ne=1; #number of electrons per unit cell
e=1.6*10**-19; #charge of electron(c)
m=9.11*10**-31; #mass of a electron(kg)
#Calculation
a=4*r/math.sqrt(3); #a is one side in bcc structure unit cell(m)
v=a**3; #volume of bcc structure unit cell(m^3)
n=na*ne/v; #density of electrons per unit volume(m^-3)
rho=m/(n*e**2*t); #The electrical resistivity(ohm metre)
#Result
print "The electrical resistivity is",round(rho*10**8,2),"*10**-8 ohm metre"
print "answer varies due to rounding off errors"
#importing modules
import math
from __future__ import division
#Variable declaration
rho=2.7*10**-8; #electrical resistivity of aluminium(ohm metre)
AW=26.98; #atomic weight of aluminium
d=2.7*10**3; #density of volume(Kg/m^3)
R=60*10**-3; #resistance(W)
l=5; #length of aluminium wire(m)
i=15; #aluminuim wire carries a current(A)
fe=3; #number of free electrons
AV=6.023*10**26; #avagadro no(mole^-1)
e=1.6*10**-19; #charge of electron(c)
#Calculation
n=AV*d*fe/AW; #density of electrons per unit volume(electrons/m^-3)
mew=1/(n*e*rho); #mobility of the charge(m^2 V^-1 S^-1)
E=i*R/l; #free electron concentration(V/m)
vd=mew*E; #drift velocity(m s^-1)
#Result
print "Free electron concentration in aluminium is",E,"V/m"
print "Mobility of the charge is",round(mew*10**3,2),"*10**-3 m^2 V^-1 S^-1"
print "The drift velocity of electrons is",round(vd*10**4,3),"*10**-4 m s^-1"
print "answer varies due to rounding off errors"
#importing modules
import math
from __future__ import division
#Variable declaration
l=1*10**-2; #length of intrinsic Ge rod(m)
b=1*10**-3; #breadth of intrinsic Ge rod(m)
t=1*10**-3; #thickness of intrinsic Ge rod(m)
temp=300; #temperature(K)
d=2.5*10**19; #intrinsic carrier density(Kg/m^3)
z=0.39; #mobility of electron(m^2 V^-1 S^-1)
zh=0.19; #mobility of hole(m^2 V^-1 S^-1)
e=1.6*10**-19; #charge of electron(c)
#Calculation
x=d*e*(z+zh); #electrical conductivity(ohm^-1 m^-1)
r=1/x; #electrical resistivity(ohm metre)
A=b*t; #area(m^2)
R=r*l/A; #resistance of an intrinsic Ge rod(ohm)
#Result
print "The resistance of an intrinsic Ge rod is",int(R),"ohm"
#importing modules
import math
from __future__ import division
#Variable declaration
d=8.48*10**28; #free electron density of copper(m^-3)
y=2.8138*10**-9; #mean free path(m)
v=1.1536*10**5; #velocity of copper(m s^-1)
t=20; #temperature of copper(C)
Kb=1.38*10**-23; #Boltzmann's constant(m^2 Kg s^-2 k^-1)
#Calculation
K=1/2*(d*v*y*Kb); #thermal conductivity of copper(W m^-1 K^-1)
#Result
print "The thermal conductivity of copper is",round(K,4),"W m^-1 K^-1"
#importing modules
import math
from __future__ import division
#Variable declaration
er=50*10**-8; #electrical resistivity(ohm metre)
t=300; #temperature(K)
r=13*10**-3; #radius of brass(m)
th=35*10**-3; #thickness of brass(m)
L=2.44*10**-8; #Lorentz number(W ohm K^-2)
#Calculation
K=L*t/er; #thermal conductivity of brass(W m^-1 K^-1)
A=math.pi*r**2; #area of brass disk(m^2)
Rt=th/(K*A); #thermal resistance of brass(K W^-1)
#Result
print "The thermal conductivity of brass is",K,"W m^-1 K^-1"
print "The thermal resistance of brass is",round(Rt,3),"K W^-1"
print "answer varies due to rounding off errors"
#importing modules
import math
from __future__ import division
#Variable declaration
x=5.87*10**7; #electrical conductivity(ohm^-1 m^-1)
k=380; #thermal conductivity of copper(W m-1 K^-1)
t=293; #temperature of copper(K)
#Calculation
L=k/(x*t); #Lorentz number(W ohm K^-2)
#Result
print "Lorentz number is",round(L*10**8,4),"*10**-8 W ohm K^-2"
#importing modules
import math
from __future__ import division
#Variable declaration
x=6.40*10**7; #electrical conductivity(mho m^-1)
t=300; #temperature of copper(K)
L=2.44*10**-8; #Lorentz number(W ohm K^-2)
#Calculation
K=x*t*L; #thermal conductivity of copper(W m^-1 K^-1)
#Result
print "The thermal conductivity of copper is",K,"W m^-1 K^-1"