# Chapter 13 : Thin Film Preparation Techniques and their Applications¶

## Example number 1 , Page number 248¶

In [3]:
#importing modules
import math
from __future__ import division

#Variable declaration
delV1=2*10**-3           #milivolts to volts
delI1=4*10**-6           #microAmpere to Ampere

#Calculations
Rs=delV1/delI1

#Result
print"Series Resistance =",Rs,"V/m"

Series Resistance = 500.0 V/m


## Example number 2 , Page number 248¶

In [4]:
#importing modules
import math
from __future__ import division

#Variable declaration
I=2*10**-3
V=1

#Calculations
rho=(V/I)*2
delR=rho-800  #change in resitance
A=1/delR      #change in conductance

#Result
print"Change in conductivity =",round(A*10**3),"*10**-3 Ohm**-1-cm**-1"

Change in conductivity = 5.0 *10**-3 Ohm**-1-cm**-1


## Example number 3 , Page number 248¶

In [5]:
#importing modules
import math
from __future__ import division

#Variable declaration
Pmax=21*10**-3        #maximum power output
Isc=100*10**-3        #short circuit voltage
Voc=500*10**-3        #open circuit voltage
Pin=35*10**-3         #Power input
A=4                   #area of solar cell

#Calculations
Fill_Factor=Pmax/(Isc*Voc)
n=(Pmax/(Pin*A))*100

#Result
print"Fill factor =",round(Fill_Factor,2)
print"Percentage of efficieny =",n,"%"    #TextBook has calculation error

Fill factor = 0.42
Percentage of efficieny = 15.0 %


## Example number 4 , Page number 249¶

In [6]:
#importing modules
import math
from __future__ import division

#Variable declaration
Pmax=18*10**-3        #maximum power output
F=0.6               #fill factor
Voc=300*10**-3        #open circuit voltage
Pin=21*10**-3         #Power input
A=5                   #area of solar cell

#Calculations
Isc=Pmax/(F*Voc)
n=(Pmax/(Pin*A))*100

#Result
print"Isc =",Isc*1000,"mA"
print"Percentage of efficieny =",round(n,2),"%"

Isc = 100.0 mA
Percentage of efficieny = 17.14 %