#importing modules
import math
from __future__ import division
#Variable declaration
v=10**7; #speed of electron(m/s)
h=6.626*10**-34; #plancks constant
m=9.1*10**-31; #mass of electron(kg)
#Calculation
lamda=h/(m*v); #de Broglie wavelength(m)
#Result
print "The de Broglie wavelength is",round(lamda*10**11,2),"*10**-11 m"
#importing modules
import math
from __future__ import division
#Variable declaration
h=6.626*10**-34; #plancks constant
lamda=0.3; #de Broglie wavelength(nm)
#For electron
me=9.1*10**-31; #mass of electron(kg)
#For proton
mp=1.672*10**-27; #mass of proton(kg)
#Calculation
p=h/(lamda*10**-9); #uncertainity in determining momentum(kg m/s)
K1=p**2/(2*me); #kinetic energy of electron(J)
K2=p**2/(2*mp); #kinetic energy of proton(J)
#Result
print "The kinetic energy of electron is",round(K1*10**18,1),"*10**-18 J"
print "The kinetic energy of proton is",round(K2*10**21,2),"*10**-21 J"
#importing modules
import math
from __future__ import division
#Variable declaration
#K=p^2/(lambda^2*2*m) where K is kinetic energy
h=6.626*10**-34; #plancks constant
lamda=10**-14; #de Broglie wavelength(m)
m=9.1*10**-31; #mass of electron(kg)
e=1.6*10**-19;
#Calculation
K=(h**2/((lamda**2)*2*m*e))*10**-9;
#Result
print "The kinetic energy is",int(K),"GeV"
print "It is not possible to confine the electron to a nucleus."
#importing modules
import math
from __future__ import division
#Variable declaration
m=9.1*10**-31; #mass of electron(kg)
v=6*10**3; #speed of electron(m/s)
h=6.626*10**-34; #plancks constant
a=0.00005;
#Calculation
p=m*v; #uncertainity in momentum(kg m/s)
deltap=a*p; #uncertainity in p
deltax=(h/(4*math.pi*deltap))*10**3 #uncertainity in position(mm)
#Result
print "The uncertainity in position is",round(deltax,3),"mm"
#importing modules
import math
from __future__ import division
#Variable declaration
L=3*10**-5; #diameter of the sphere(nm)
h=6.626*10**-34; #plancks constant
m=1.67*10**-27; #mass of the particle(kg)
n=1;
e=1.6*10**-19;
#Calculation
E1=((h**2)*(n**2))/(8*m*(L**2)*e)*10**12 #first energy level(MeV)
E2=E1*2**2; #second energy level(MeV)
#Result
print "The first energy level is",round(E1,3),"MeV"
print "The second energy level is",round(E2,4),"MeV"
#importing modules
import math
from __future__ import division
#Variable declaration
h=6.626*10**-34; #plancks constant
a=2*10**12; #angular frequency(rad/s)
e=1.6*10**-19;
#Calculation
E0=(0.5*(h/(2*math.pi*e))*a)*10**3; #ground state energy(MeV)
E1=(1.5*(h/(2*math.pi*e))*a)*10**3; #first excited state energy(MeV)
#Result
print "The ground state energy is",round(E0,3),"MeV"
print "The first excited state energy is",round(E1,3),"MeV"
#importing modules
import math
from __future__ import division
#Variable declaration
h=6.626*10**-34; #plancks constant
E=85; #Energy(keV)
c=3*10**8; #speed of light(m/s)
e=1.6*10**-19;
#Calculation
lamda=(h*c)/(E*10**3*e); #de Broglie wavelength(m)
m=9.1*10**-31; #mass of electron(kg)
K=((h**2)/((lamda**2)*2*m*e)); #kinetic energy of electron(keV)
#Result
print "The kinetic energy of the electron is",round(K*10**-3,2),"keV"
print "answer in the book varies due to rounding off errors"
#importing modules
import math
from __future__ import division
#Variable declaration
lamda=0.08; #de Briglie wavelength(nm)
m=9.1*10**-31; #mass of electron(kg)
h=6.626*10**-34; #plancks constant
#Calculation
v=h/(m*lamda*10**-9); #velocity of the electron(m/s)
#Result
print "The velocity of the electron is",round(v/10**6,1),"*10**6 m/s"
#importing modules
import math
from __future__ import division
#Variable declaration
h=6.626*10**-34; #plancks constant
lamda=589*10**-9; #wavelength(m)
m=9.1*10**-31; #mass of electron(kg)
e=1.6*10**-19;
#Calculation
V=((h**2)/((lamda**2)*2*m*e))*10**6; #potential diference(micro V)
#Result
print "The potential difference through which an electron should be accelerated is",round(V,2),"micro V"
#importing modules
import math
from __future__ import division
#Variable declaration
deltax=0.92*10**-9; #uncertainity in position(m)
m=9.1*10**-31; #mass of electron(kg)
h=6.626*10**-34; #plancks constant
#Calculation
deltav=h/(4*math.pi*m*deltax); #uncertainity in velocity(m/s)
#Result
print "The uncertainity in velocity is",round(deltav/10**4,1),"*10**4 m/s"
#importing modules
import math
from __future__ import division
#Variable declaration
h=6.626*10**-34; #plancks constant
n=3; #for second excited state
m=1.67*10**-27; #mass of proton(kg)
E=0.5; #energy(MeV)
e=1.6*10**-19;
#Calculation
L=((h*n)/math.sqrt(8*m*E*10**6*e))*10**15; #length of the box(fm)
#Result
print "The length of the box for proton in its second excited state is",round(L,1),"fm"