#importing modules
import math
from __future__ import division
#Variable declaration
e=1.6*10**-19; #charge of the electron(c)
V=18; #potential difference(kV)
m=9.1*10**-31; #mass of the electron(kg)
#Calculation
K=e*V*10**3; #Kinetic energy(J)
v=math.sqrt((2*e*V*10**3)/m); #speed of electron(m/s)
#Result
print "The kinetic energy of electron is",K*10**16,"*10**-16 J"
print "Speed of the electron is",round(v/10**7,3),"*10**7 m/s"
#importing modules
import math
from __future__ import division
#Variable declaration
m=9.1*10**-31; #mass of electron(kg)
vx=4*10**6; #velocity along x-axis(m/s)
E=1500; #electric field strength(N/C)
l=0.07; #length in y-axis(m)
q=1.6*10**-19; #charge of electron(c)
#Calculation
y=(-q*E*(l**2))/(2*m*(vx**2))*10**2; #vertical displacement of electron(cm)
#Result
print "The vertical displacement of electron when it leaves the electric field is",round(y,3),"cm"
#importing modules
import math
from __future__ import division
#Variable declaration
u=5*10**5; #velocity(m/s)
m=1.67*10**-27; #mass of proton(kg)
q=1.6*10**-19;
E=500; #electric field(N/C)
theta=42; #angle(degrees)
#Calculation
theta=theta*math.pi/180; #angle(radian)
t=((u*m*math.sin(theta))/(q*E))*10**6; #time required for the proton(micro s)
#Result
print "The time required for the proton is",round(t,2),"micro s"
#importing modules
import math
from __future__ import division
#Variable declaration
m=1.67*10**-27; #mass of proton(kg)
q=1.6*10**-19;
B=0.36; #magnetic field(T)
R=0.2; #radius(m)
#Calculation
v=(q*B*R)/m; #orbital speed of proton(m/s)
#Result
print "The orbital speed of proton is",round(v/10**6,1),"*10**6 m/s"
#importing modules
import math
from __future__ import division
#Variable declaration
v=2*10**6; #speed(m/s)
theta=30; #angle at which proton enters at the origin of coordinate system(degrees)
B=0.3; #magnetic field(T)
m=1.67*10**-27; #mass of proton(kg)
q=1.6*10**-19;
#Calculation
theta=theta*math.pi/180; #angle(radian)
vp=v*math.sin(theta); #v(perpendicular component)
vpa=v*math.cos(theta); #v(parallel component)
p=(vpa*2*math.pi*m)/(q*B); #pitch of the helix described by the proton
R=((m*vp)/(q*B))*10**2; #radius of the trajectory
#Result
print "the pitch of the helix is",round(p,2),"m"
print "the radius of trajectory is",round(R,2),"cm"
#importing modules
import math
from __future__ import division
#Variable declaration
V=25; #deflecting voltage(V)
l=0.03; #length of deflecting planes(m)
d=0.75; #distance between 2 deflecting plates(cm)
Va=800; #final anode voltage(V)
D=0.2; #distance between the screen and the plates(m)
e=1.6*10**-19;
m=9.1*10**-31; #mass of electron(kg)
#Calculation
y=(((V*l)/(2*d*Va))*(D+(l/2)))*10**4; #displacement produced(cm)
a=((V*l)/(2*d*Va))*10**2;
alpha=math.atan(a); #angle made by the beam with the axis(radian)
alpha1=alpha*180/math.pi; #angle(degrees)
v=((math.sqrt((2*e*Va)/m))/math.cos(alpha)); #velocity of electron(v)
#Result
print "the displacement produced is",round(y,2),"cm"
print "the angle made by the beam with the axis is",round(alpha1,2),"degrees"
print "velocity of electrons is",round(v/10**7,2),"*10**7 m/s"
#importing modules
import math
from __future__ import division
#Variable declaration
e=1.6*10**-19;
B=5*10**-5; #magnetic field(Wb/m**2)
l=0.04; #length of magnetic field along the axis(m)
m=9.1*10**-31; #mass of electron(kg)
D=0.25; #distance of the screen from the field(m)
Va=600; #final anode voltage(V)
#Calculation
y=(((e*B*l)/m)*math.sqrt(m/(2*e*Va))*(D+(l/2)))*10**2; #displacement of the electron(cm)
#Result
print "the displacement of the electron beam spot on the screen is",round(y,2),"cm"
#importing modules
import math
from __future__ import division
#Variable declaration
E=2.5*10**4; #electric field(V/m)
B=0.18; #magnetic field(T)
B1=0.22; #magnetic field in the main chamber(T)
m2=13; #mass number of carbon(kg)
m1=12; #mass number of carbon(kg)
e=1.6*10**-9;
q=1.67*10**-27;
#Calculation
v=E/B; #velocity of particles(m/s)
s=((2*v*(m2-m1)*q)/(e*B1))*10**12; #seperation on photographic plate(cm)
#Result
print "the seperation on photographic plate is",round(s,3),"cm"
#importing modules
import math
from __future__ import division
#Variable declaration
v=5.6*10**6; #speed of the electron(m/s)
m=9.1*10**-31; #mass of electron(kg)
e=1.6*10**-19;
s=0.03; #distance travelled(m)
#Calculation
E=(m*(v)**2)/(2*e*s); #intensity of electric field(N/C)
#Result
print "The intensity of electric field is",round(E),"N/C"
#importing modules
import math
from __future__ import division
#Variable declaration
v=5*10**7;
B=0.4; #magnetic field(T)
r=0.711*10**-3; #radius of the circle(m)
#Calculation
Q=v/(B*r); #charge to mass ratio(C/kg)
#Result
print "The charge to mass ratio is",round(Q/10**10,2),"*10**10 C/kg"
#importing modules
import math
from __future__ import division
#Variable declaration
m=9.1*10**-31; #mass of electron(kg)
v=3*10**7; #speed of electron(m/s)
R=0.05; #radius of the circle(m)
q=1.6*10**-31;
#Calculation
B=((m*v)/(q*R))*10**-9; #magnetic field(mT)
#Result
print "The magnetic field to bend a beam is",round(B,1),"mT"
#importing modules
import math
from __future__ import division
#Variable declaration
m=9.1*10**-31; #mass of electron(kg)
q=1.6*10**-19;
t=8*10**-9; #time(ns)
#Calculation
B=(2*math.pi*m*500)/(q*t); #magnetic field(T)
#Result
print "The magnetic field is",round(B,2),"T"
#importing modules
import math
from __future__ import division
#Variable declaration
v=9.15*10**7; #cyclotron frequency of proton(Hz)
m=1.67*10**-27; #mass of proton(kg)
q=1.6*10**-19;
#Calculation
B=(2*math.pi*v*m)/q; #magnetic field(T)
#Result
print "The magnetic field is",int(B),"T"